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The Dictionary of Immunology by J.M. Cruse and R.E. Lewis, CRC Press,
1996, defines Immunology as a ‘branch of biomedical science concerned with
the response of the organism to immunogenic (antigenic) challenge, the recog-
nition of self from non-self and all the biological (in vivo), serological (in vitro),
physical, and chemical aspects of immune phenomena’. In this connection
Clinical Immunology may be regarded as the discipline analyzing clinical
manifestations in which immunological processes play a part or may need to
be assessed. Therefore, all immunologic reactions responsible for clinical
hypersensitivity and disease as outlined by R.R.A. Coombs and P.G.H. Gell
many years ago may be covered under one headline, Clinical Immunology.
This includes diseases, where infections fail to be controlled (infectious dis-
eases, immune deficiencies), overreactions to innocuous substances in the
environment (allergic diseases), reactions in which the immune system attacks
self (autoimmune diseases), transplant rejection, immune response against
tumours as well as manipulation of the immune response.

As outlined in our first Editorial in January 1998, the main focus of Inter-

national Archives of Allergy and Immunology will be on molecular and cellular
aspects of allergology and immunology. We thus appreciate the opportunity to
publish a full issue on Antinuclear Antibodies. These antibodies are found in
patients with various connective tissue disorders and, due to the knowledge of
their molecular targets, they can be used as important diagnostic markers for
the differentiation of autoimmune diseases. In the future, we will continue to
publish such immunological papers, which combine various disciplines and
thus improve the general knowledge and acceptance of Immunology re-
search.

Rudolf Valenta, MD, Managing Editor
Dietrich Kraft, MD, Editor-in-Chief
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Abstract

In 1948, the observation of the LE cell phenomenon in a

patient with systemic lupus erythematosus (SLE) began

the discovery of a broad variety of autoantibodies di-

rected to nuclear antigens called antinuclear antibodies

(ANA). Nowadays, different ANA serve as important

diagnostic parameters for differentiating most of the

connective tissue diseases, such as SLE, neonatal lupus

syndromes, Sjögren’s syndrome, scleroderma, autoim-

mune myositis, mixed connective tissue disease and

other overlaps. This overview summarizes the history of

ANA and their detection methods, in part to introduce

the subsequent papers dealing with special topics of

ANA-related diseases in this issue. Furthermore, the

pathogenic role of these autoantibodies in targeting non-

organ-specific intracellular antigens as a functional im-

portant constituent of a subcellular particle or multimo-

lecular complex is addressed. Notably, some of these

autoantibodies have functioned as significant tools for

cell biologists to elucidate the subcellular structures and

functions of these autoantigens. In the future, we can

expect further advances to answer such important ques-

tions as why these antigens are targets of autoantibod-

ies, what is their pathogenic impact and what are the trig-

gers of autoimmunity?
Copyright © 2000 S. Karger AG, Basel

In 1948, Malcom Hargraves, Helen Richmond and the
medical resident Robert Morton from the haematology
laboratory of the Mayo Clinic in Rochester noted the pres-
ence of previously unknown cells in the bone marrow of a
patient with acute systemic lupus erythematosus (SLE).
The cells, called LE cells, were described as mature neutro-
philic polymorphonuclear leukocytes which had phagocy-
tosed Feulgen-staining nuclear material [1]. These obser-
vations marked the beginning of the history of antinuclear
antibodies (ANA) and a long-lasting period of a variety of
remarkable discoveries in the field. Subsequently, Hase-
rick and Bortz [2], in 1949, made the important observa-
tion that sera from SLE patients, when incubated with nor-
mal bone marrow, were able to induce the formation of LE
cells [2]. The inducing factor, the so-called LE factor, was
identified as being associated with the gammaglobulin
fraction of the SLE serum [3] that was suspected to be an
antibody. For the next 10 years, the detection of LE cells in
the peripheral blood remained the most popular laboratory
test for the diagnosis of SLE. In 1953, Peter Miescher
observed that sera from rabbits immunized with cell nuclei
were able to induce LE cell formation using normal human
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leukocytes. One year later, he was able to demonstrate that
absorption of SLE sera using cell nuclei isolated from calf
thymus cells eliminated the ability of the serum to induce
LE cell formation [4]. Based on these experiments, the LE
factor could be confirmed as an ANA. Finally, these inves-
tigations resulted in the simultaneous report of antibodies
to DNA in sera from patients with SLE by at least four
different groups in 1957 [5–8].

In the following decade, several efforts were undertak-
en to improve detection methods and to simplify anti-
body test systems for routine diagnostics. In this regard,
George Friou was the first who applied the immunofluo-
rescence technique for the detection of ANA [9]. Subse-
quently, the identification of different immunofluores-
cence patterns of ANA led to the detection of different
antibody specificities. After 1968, the indirect immuno-
fluorescence test was more and more routinely used in the
laboratory by using different substrates, such as tissue sec-
tions, desquamated cells, chicken erythrocytes and HeLa
cells. HEp-2 cells were introduced for routine ANA
screening in 1975.

The different immunofluorescence patterns of ANA
imply that, besides DNA and histone proteins, other
nuclear proteins are targeted by autoantibodies. Using salt-
soluble nuclear extracts from calf thymus [called extract-
able nuclear antigens (ENA)], precipitating autoantibodies
could be detected in the sera of patients with SLE and
Sjögren’s syndrome by means of immunodiffusion (Ouch-
terlony technique). Among these autoantibodies, anti-Sm
antibodies of the serum of Stephanie Smith, a young SLE
patient, could be described for the very first time [10].
Thereafter, these antibodies could be demonstrated as a
highly specific marker for SLE which were considered in
the classification criteria [11]. Furthermore, antibodies to
the ribonucleoprotein (RNP) antigen (originally called
anti-Mo after the prototype serum) were identified in the
sera of patients with SLE by Mattioli and Reichlin [12] in
1971 by immunodiffusion. The term RNP stems from the
early observation that its antigenic activity could be de-
stroyed by treatment with ribonuclease and trypsin, where-
as the Sm antigen was resistant to such a digestive treat-
ment. During the same period, Sharp et al. [13, 14]
described a group of patients with a syndrome character-
ized by features of SLE, myositis and scleroderma, which
they named mixed connective tissue disease (MCTD). The
sera of these patients contained antibodies to ENA, as mea-
sured by passive haemagglutination. Subsequent studies
showed that ENA reacted with RNP. Anti-RNP antibodies
were found in 25–30% of patients with SLE, typically in
association with anti-Sm antibodies. Isolated detection of

these autoantibodies in high titres represents a good sero-
logic parameter for MCTD.

Moreover, precipitating autoantibodies called anti-
SJD and anti-SJT were described in the sera of patients
with Sjögren’s syndrome in 1961 [15]. Two precipitin
reactions in sera from patients with SLE were designated
Ro and La, based on the names of the patients in whom
they were first identified [16]. In 1975, both antibodies
were described again in the sera of patients with Sjögren’s
syndrome as designated anti-SS-A and anti-SS-B after
detection by immunodiffusion using Wil2 extract [17].
The antigenic identity of Ro and SS-A, as well as of La
and SS-B, was demonstrated in an interlaboratory com-
parison [18]. Although never confirmed by serum ex-
change, SJD is assumed to be identical to Ro/SS-A and
SJT to La/SS-B.

In the last decades, the field of autoantibodies has
developed extensively to include other diseases besides
SLE and Sjögren’s syndrome. It is now abundantly clear
that there are multiple autoantibodies of different specific-
ities present in several autoimmune diseases. Most sys-
temic autoimmune diseases have a highly characteristic
profile of autoantibodies to cellular antigens, both nuclear
and cytoplasmic. These autoantibody profiles have been
extremely useful tools for diagnostic purposes. New clini-
cal subsets of autoimmune diseases, such as MCTD, anti-
Jo-1 syndrome and certain overlaps of scleroderma/poly-
myositis, have been characterized on the basis of a reliable
link to autoantibody specificities. On the other hand, the
molecular structure and biological function of a majority of
these autoantigens have been identified by using autoanti-
bodies from patients’ sera as tools. The clinical importance
of antibodies, as well as the identified biological functions
of the respective autoantigens of important autoantigen-
autoantibody systems, are summarized in table 1. Synthe-
sis of available data suggests that the autoimmune re-
sponse is (auto)antigen driven and that the antigen is a sub-
cellular particle or a multimolecular complex involved in
important and, in part, essential cellular functions. The
autoantigen appears to be presented as immunogen in its
activated form, because their functional active sites are
very frequently targeted by autoantibodies [19–21].

One of the central issues in the field of autoantibodies
relates to the pathogenic relevance of these autoimmune
phenomena. Formerly, it seemed to be almost impossible
that most of the autoantibodies described are directly
involved in tissue injury in different connective tissue dis-
eases, with the exception of anti-dsDNA antibodies. The
pathogenic importance of anti-dsDNA antibodies has
been repeatedly demonstrated in lupus nephritis. In re-



dsDNA

ANA- and ENA-Related Diseases Int Arch Allergy Immunol 2000;123:5–9 7

Table 1. Characterization of autoantigen-autoantibody systems in systemic autoimmune diseases

Autoantibody to Characterization of antigen Biological function Disease association

double-stranded, native DNA genetic code SLE

Histones H1, H2A, H2B, H3, H4, H5, [H2A-H2B]-DNA dimer organization of nucleosomes drug-induced lupus, SLE,
rheumatoid arthritis

Sm core proteins B (28), B) (29), D (16), E (13), F and G of
U1, U2, U4, U5 and U6 snRNPs

splicing of pre-mRNA SLE

U1-nRNP proteins 70 kD, A (33) and C (22) of U1-snRNP splicing of pre-mRNA SLE, MCTD

RA33 protein A1 (34 kD) of hnRNP splicing of pre-mRNA rheumatoid arthritis, MCTD, SLE

Ro/SS-A 52-kD and 60-kD RNP containing small uridine-rich
nucleic acids (hY1, hY3, hY4, hY5)

DNA-binding protein (52-kD Ro);
quality control for 5S rRNA production/
involvement in translation of ribosomal
protein mRNA (60-kD Ro)

Sjögren’s syndrome, neonatal
lupus. subacute cutaneous lupus,
SLE

La/SS-B phosphoprotein (48 kD) associated with a variety of
small RNAs (precursors of cellular 5S RNA and tRNA,
7S RNA, viral RNAs, Ro/SS-A cytoplasmic hY RNAs)

probably transcription termination
factor of RNA polymerase III

Sjögren’s syndrome, neonatal
lupus, subacute cutaneous lupus,
SLE

PCNA cyclin (36 kD) auxiliary protein of DNA-polymerase ‰ SLE

Ribosomal RNP phosphoproteins P0 (15 kD), P1 (16 kD) and P2
(38 kD)

active in elongation step of protein
synthesis

SLE

Scl-70 DNA topoisomerase I (100 kD) unwinding of DNA scleroderma (diffuse form)

Centromere major centromere proteins A (15–16 kD), B (80 kD)
and C (120 kD)

coordinated segregation of chromo-
somes to dividing cells

limited scleroderma (CREST)

PM-Scl complex of 11–16 proteins ranging from 20 to 110 kD involved in ribosome biogenesis scleroderma, polymyositis/
scleroderma overlap

Fibrillarin protein (34 kD) of the U3-RNP particle role in rRNA processing and ribosome
assembly

scleroderma

RNA-pol I RNA polymerase I transcripts rRNA precursors scleroderma

RNA-pol II RNA polymerase II transcripts mRNA (hnRNA) scleroderma

RNA-pol III RNA polymerase III transcripts 5S rRNA, tRNA and other
small RNAs

scleroderma

Ku heterodimer consisting of 70- and 80- to 86-kD protein
subunits, DNA binding component of a 350-kD cata-
lytic subunit with DNA-dependent kinase activity

repairs dsDNA breaks, V(D)J recom-
bination

SLE, polymyositis/scleroderma
overlap

Jo-1 histidyl-tRNA synthetase (52 kD) catalyzes the esterification of histidine
to its cognate tRNA

polymyositis
(anti-Jo-1 syndrome)

Mi-2 240-kD protein (helicase/ATPase domain containing
protein as part of NuRD complex)

remodelling of nucleosomes dermatomyositis

SRP (signal recognition
particle)

cytoplasmic RNP complex composed of 6 polypeptides
and a tRNA-like molecule (7SL RNA)

protein translocation from the ribosome
to the endoplasmic reticulum

polymyositis

NuMA (nuclear mitotic
apparatus)

nuclear protein (centrophilin, 200–240 kD) associated
with mitotic apparatus during mitosis

organization of chromatine architecture
and role in spindle function

Sjögren’s syndrome

Proteasome cytoplasmic and nuclear-localized proteinase complex
(20S), arranged in a cylindrical structure of 4 stacked
rings, each composed of 7 subunits (·-type subunits
form the outer rings, ß-type subunits form the inner
rings carrying the proteolytic sites)

involved in the ubiquitin-dependent
selective degradation of short-lived
and abnormal proteins; processing of
antigens presented by MHC class I
molecules

SLE, Sjögren’s syndrome,
myositis

Phospholipids negatively charged phospholipids (e.g. cardiolipin,
phosphatidylserine), phospholipid binding proteins
(ß2 glycoprotein I)

role in coagulation antiphospholipid syndrome,
SLE

cent years, there is increasing evidence that some ANA
may be pathogenic. Besides the possibility of autoanti-
bodies entering living cells and altering subcellular func-
tions, which is controversial, nuclear autoantigens can
appear on the cell surface. For example, apoptosis leads to

apoptotic blebs on the cell surface containing several
nuclear autoantigens which are enzymatically cleaved or
not [22]. Moreover, other mechanisms, such as signalling
pathways during immune activation, could also result in
the transfer of autoantigens on the cell surface. This sur-
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face expression of autoantigens might be again a trigger or
further accelerator of autoantibody production. Alterna-
tively, this accessible autoantigen might be able to induce
several effector pathways after autoimmunity has been
established.

The indirect immunofluorescence test using mono-
layers of cultured HEp-2 cells, a human laryngeal carcino-
ma cell line, is still recommended as the ANA screening
test. Nowadays, further differentiation of ANA is per-
formed routinely be enzyme immunoassays (EIA) using
affinity-purified or recombinant antigens. A critical eval-
uation of EIA of different manufacturers for the detection
of ANA of defined specificities demonstrated that these
antibody detection systems need further improvement for
certain antigen-antibody systems, especially anti-dsDNA
and anti-Sm [23]. To ensure quality standards of antibody
detection systems, CDC reference sera have been widely
used as standards for the developement of tests and for
their routine use. Additional methods for the detection of
autoantibodies of patients’ sera (to characterize autoim-
mune sera in more detail) are immunoblotting and immu-
noprecipitation, which have been proven to be useful as
confirmation tests of EIA.

In this issue, an overview of different ANA and related
diseases, as well as their role in the pathogenesis of these
diseases is depicted. The current cell biological knowledge
on the structure and function of subnuclear compart-
ments as targets of ANA is summarized by Hemmerich
and von Mikecz [24]. The authors emphasize that new
techniques, such as confocal laser scanning microscopy,
fluorescence resonance energy transfer and in vivo obser-
vation of cellular events, provide new possibilities to
study targets of ANA specificities with respect to subnu-
clear architecture and function. Sherer and Shoenfeld [25]
in their paper review the induction of autoimmune dis-
eases via idiotype manipulation, the idiotypes of some
ANA-associated antibodies (anti-DNA, anti-Ro/SS-A,
anti-La/SS-B, anti-Sm), the pathogenic role of antibodies
carrying idiotypes, and the clinical implications of the
idiotypic network in autoimmunity. The role of autoanti-
bodies, especially of anti-dsDNA antibodies and antinu-
cleosome antibodies as well as immune complexes in the
pathogenesis of SLE, is addressed by the article of Herr-
mann et al. [26]. They postulate that increased amounts
and abnormal presentation of autoantigens favoured by
clearance defects of apoptotic material contribute to the
initiation of an autoimmune process. The importance of
anti-Ro/SS-A and anti-LA/SS-B antibodies in Sjögren’s
syndrome is discussed in detail in the contribution from
Mavragani et al. [27]. These autoantibodies are also of sig-

nificant importance in the diagnosis of neonatal lupus
syndromes. Additionally, these syndromes reveal that the
diaplacental transfer of autoantibodies directed to nuclear
antigens from the mother’s circulation into the fetus is
able to induce inflammatory processes, e.g. at the fetal
conduction system of the heart or at the skin [28]. It is well
known that ANA and related diseases can be induced by
several drugs and exposure to chemical agents. Exposure
to high levels of silica dust has been linked to increased
risk of several autoimmune diseases, including systemic
sclerosis. In a large cohort comprising 1,891 uranium
miners, Conrad and Mehlhorn [29] report 390 individu-
als exhibiting symptoms of a connective tissue disease,
including 18 patients with definite SLE and 12 patients
with probable systemic sclerosis.

A subgroup of patients with SLE producing antiphos-
pholipid antibodies manifests characteristic clinical fea-
tures which can include stroke, venous thrombosis, recur-
rent abortion and thrombocytopenia. This was first de-
scribed as antiphospholipid syndrome by Harris et al.
[30]. Antiphospholipid antibodies do not belong to ANA.
However, because of the increasing role of these autoanti-
bodies in SLE and other ANA-related diseases, the cur-
rent knowledge about this clinical entity, with an empha-
sis on clinical features and serologic tests in primary and
secondary antiphospholipid syndrome, has been covered
by Gromnica-Ihle and Schössler [31]. Most notably, re-
cent studies indicate that ß2-glycoprotein I is required for
the binding of antiphospholipid antibodies. Another arti-
cle in this issue is not directly related to classical ANA and
anti-ENA. Thus, Feist [32] highlights the structure and
function of proteasomes as a target of autoantibodies
recently detected in several rheumatic autoimmune dis-
eases, particularly in SLE, Sjögren’s syndrome and myosi-
tis. Although these autoantibodies represent a different
class of autoantibodies, they react with the proteasome
complex involved in the decision of the presentation of
‘self’ or ‘non-self’ peptide that is currently only poorly
understood [32].

It is hypothesized that abnormalities in the generation
of the autoantibody repertoire, the processes of gene
recombination, receptor editing, somatic hypermutation
and/or selective influences may play a role in autoim-
mune disease. New approaches to the analysis of variable
region genes from unstimulated individual human B cells
employing single-cell polymerase chain reaction have pro-
vided new insights into the B cell repertoire of both nor-
mals and patients with systemic autoimmune diseases, as
reviewed in this issue by Hansen et al. [33]. However, it
remains to be elucidated whether the IgV gene usage and



ANA- and ENA-Related Diseases Int Arch Allergy Immunol 2000;123:5–9 9

the mutational pattern of the same donor at different time
points of the disease, in different immune compartments
as well as in particular B cell subsets, will provide new
clues to understanding the development of B cells under
autoimmune conditions.

During the last five decades, starting with the discov-
ery of the LE cell phenomenon, our increasing knowledge
about the diagnostic and pathogenic role of ANA and oth-
er autoantibodies has been extended enormously and is
partially reflected in this issue. Moreover, several autoan-
tibodies have proven to be important tools for cell biolo-

gists to study subcellular structures and functions. In the
future, we can expect further advances to answer such
important questions as why these subcellular structures
are targets of autoantibodies, what are the true triggers of
autoimmunity and what is their pathogenic impact?
Based on clear answers to these questions, we could
expect the development of specific therapies targeting
autoantibody-producing cells or their precursors, includ-
ing a potential specific suppression of autoantibody pro-
duction by the induction of tolerance.
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Abstract

Antinuclear antibodies (ANA) entail a large group of

autoantibodies (Abs) that bind certain nuclear antigens.

The ANA test is a useful screening test for many autoim-

mune diseases and the presence of a specific binding

pattern directs secondary testing for specific Abs associ-

ated with the suspected disease. Idiotypes (Ids) are the

antigenic constitution of the variable region of an Ab,

and they are recognized by anti-Ids Abs. The Id network

is composed of interacting Abs in which the Id determi-

nants of each Ab are complemented by those of another.

It has a role in both physiologic and pathologic condi-

tions. In this communication, we review the induction of

autoimmune diseases via Id manipulation, the Ids of

some ANA-associated Abs (DNA, SS-A, SS- B, Sm Abs),

the pathogenic role of Abs carrying Ids, and the clinical

implications of the Id network in autoimmunity.
Copyright © 2000 S. Karger AG, Basel

Introduction

Antinuclear antibodies (ANA) entail a large group of
autoantibodies (Abs) that bind certain nuclear antigens.
These are classified according to patterns observable by
indirect immunofluorescence that can predict the pro-
teins that bind the Ab, but since immunofluorescence pat-
terns do not provide definite identification of Abs, sec-
ondary testing is necessary for identification of the spe-
cific autoantigen reactive with the Abs [1]. The ANA test
is a useful screening test for many autoimmune diseases,
especially for systemic lupus erythematosus (SLE). The
presence of a specific binding pattern directs secondary
testing for specific Abs associated with the suspected dis-
ease (table 1). Nonetheless, ANA can be found in healthy
individuals as well, mainly in the speckled, homogeneous,
and mixed homogeneous and speckled pattern [2]. As
such, ANA is considered one of the natural Abs which
exist in healthy individuals [3]. Additionally, ANA can be
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Table 1. Association between ANA
immunofluorescence pattern, autoantigen
and autoimmune diseases [6]

Immunofluorescence pattern Antigen Disease

Jo-1
ribosomal P
M2

PM + ILD (70)
SLE (10)
PBC (97), CREST (15)

Mitotic spindle apparatus Numa, 250 SLE, SS (rare)

Homogeneous nuclear dsDNA
histon

topoisomerase-1

SLE (60)
SLE (60), drug-induced
SLE (95)
PSS (15–70)

Speckled nuclear hnRNP
U1 snRNP 70, 33, 22
Sm snRNP core 29, 28, 16
Ki 66, 86
SS-A
SS-B
Cyclin
CENP 17, 80, 160

MCTD (100)
MCTD (100), SLE (25)
SLE (20)
SLE (10)
SS (60), SLE (35)
SS (40), SLE (15)
SLE (2)
CREST (80), PBC (15)

Nuclear membrane Gp 120 PM (rare)

Nucleolar PM/Scl
Pol 1, 2, 3
fibrillarin

PM/PSS (50), PM (8), PSS (3)
PSS (2–43)
PSS (8)

Antibody frequency, expressed in percentages, is shown in parentheses. CREST = Calci-
nosis, Raynaud’s phenomenon, esophageal dysfunction, sclerodactyly, teleangiectasia; ILD =
interstitial lung disease; MCTD = mixed connective-tissue disease; PBC = primary biliary
cirrhosis; PM = polymyositis; PSS = progressive systemic sclerosis; SLE = systemic lupus
erythematosus; SS = Sjögren’s syndrome.

found in certain other conditions, such as among elderly
persons [4], in persons with chronic abscesses, tuberculo-
sis, subacute bacterial endocarditis and malaria [5], and
in patients treated with drugs such as procainamide,
hydralazine and isoniazide [6]. In this communication,
we review the idiotypic network in some of the Abs and
diseases associated with ANA.

The Idiotypic Network in Autoimmunity

Idiotypes – General Considerations

Antibodies can be characterized by the antigens with
which they bind, and by the isotypic variation of their
constant regions. Nevertheless, the variable regions of the
antibodies are immunogenic, and thus can be used to gen-
erate a set of Abs that recognize them. The antigenic con-
stitution of the variable region of an antibody is known as
its idiotype (Id), and it is recognized by anti-idiotypic
antibodies [7]. The Ids may be composed of amino acid

sequences located on either light or heavy chains alone, or
in combination (conformational idiotypes). They can also
be located within the antigen-binding hypervariable seg-
ments, or within the intervening framework sequences.
Private Ids are those that react only with the immunizing
immunoglobulin, and define Ids specific for the individu-
al antibody clone. Conversely, Ids that are shared between
separate antibody clones from different individuals are
termed common or cross-reactive Ids [8]. These are
believed to result either from inheritance of antibody
genes among related individuals, or from preservation
and sharing of certain germline genes by unrelated indi-
viduals within a species.

Induction of Autoimmune Diseases via Idiotypic

Manipulation

In 1974, Jerne [9] presented his theory of the idiotypic
network. Briefly, as all individuals possess thousands of
Ids reflecting the infinite possibilities of foreign antigen
structure, any antigenic stimulation leads to the produc-
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Table 2. Anti-DNA idiotypes (partial list) [25]

Name of
idiotype

Source of idiotype Idiotypic site

monoclonal mouse L lambda
16/6 polyclonal rabbit VH(VHIII) (CDR1, CDR2)
MIV-7 polyclonal rabbit VH1
18/2 polyclonal rabbit light chain CDR3
21/28 rabbit antipeptide,

monoclonal mouse
heavy chain

4.6.3 polyclonal rabbit VL (VL1)
PR4 polyclonal rabbit conformational heavy and light
BEG-2 polyclonal rabbit light chain
SA1 polyclonal VH1
8.12 monoclonal mouse L
F4 monoclonal mouse VH
AM polyclonal rabbit conformational
TOF polyclonal rabbit close to DNA binding site
9G4 polyclonal rabbit VH
B3 polyclonal rabbit lambda chain

tion of Abs carrying Ids (Ab1), anti-Ids (Ab2) and anti-
anti-Ids (Ab3) as a network of interacting Abs in which
the Id determinants of each Ab are complemented by
those of another. Whereas the idiotypic network plays a
crucial physiologic role in regulating the immune re-
sponse to nonself antigens and in preventing the develop-
ment of pathogenic Abs, it also can be manipulated either
naturally or by in vivo experiments that lead to the devel-
opment of autoimmune diseases [10].

Models of induction of autoimmune diseases in ani-
mals via idiotypic manipulation share common principles
[11]: immunization of naive mice with a specific Ab (Ab1)
leads to the generation of anti-Ab (e.g. anti-Id = Ab2)
directed against the Id on the immunizing Ab. A follow-
up of the mice for a longer period reveals the de novo
generation of anti-anti-Abs (Ab3) by the mice, which may
simulate the original Ab in its binding characteristics. The
phenomenon of naive mice producing specific Abs is
associated with the emergence of the full-blown serologi-
cal, immunohistochemical, and clinical manifestations of
the respective disease. Examples for such models include
induction of SLE, antiphospholipid syndrome, vasculitis,
Goodpasture’s syndrome, thyroiditis, and even athero-
sclerosis, in which the immune system has an important
role in both prevention and acceleration [12–24]. A repre-
sentative example would be the induction of SLE: immu-
nization of mice with monoclonal or polyclonal human or
murine anti-DNA antibodies in an adjuvant (active in-
duction) led to the appearance of SLE in the mice with

characteristic Abs (anti-DNA, SS-A, histones, Sm) and
clinical presentations (proteinuria, alopecia, increased
erythrocyte sedimentation rate, paralysis, immune com-
plexes in kidneys, short survival time).

Idiotypes in ANA-Associated Abs

A discussion about the large number of Abs associated
with positive staining of ANA (table 1) is beyond the
scope of this paper. Specific Abs, on the other hand, are
discussed in detail.

Anti-DNA Abs

Over 30 Ids of anti-DNA Abs have been described [re-
viewed in ref. 25]. Most of them were described on human
hybridoma-derived monoclonal Abs from the peripheral
blood lymphocytes of lupus or leprosy patients, while
some were identified on monoclonal anti-DNA Abs de-
rived from normal individuals. There are two general
classes of anti-DNA Abs: germline gene segments encode
one group, while the other is encoded by genes that have
undergone mutations [26, 27]. Some of these Ids are pre-
sented in table 2.

Anti-SS-A and Anti-SS-B Abs

The sera of precipitants of 13 individuals positive for
anti-SS-A was used to prepare a heterologous rabbit anti-
Id to polyclonal anti-SS-A [28]. The resulting anti-Id, anti-
Ro1, was specific for anti-SS-A F(ab))2 immunogen, but
did not bind to human IgG. The anti-Id was blocked by
anti-SS-A IgG and F(ab))2 but not by normal human IgG.
The location of the Id Ro1 was on the Ab heavy chain, in
or close to the antigen binding site of anti-SS-A [29].
Moreover, 3 out of 12 additional anti-SS-A positive wom-
en showed varying degrees of reactivity with the anti-Id.

Similarly, the sera of 3 unrelated patients was used to
first prepare rabbit anti-Id Abs against affinity-purified
anti-SS-B Abs [30]. Each anti-Id recognized private Id
expressed only on the immunizing anti-SS-B, located in
the hypervariable regions either in or near the antigen
binding site. The expression of private Ids on the Abs may
reflect their respective restricted antigenic specificity, in
contrast to the diversity of antigens that are recognized by
anti-DNA Abs [31].

Idiotypic manipulation with anti-SS-A and anti-SS-B
Abs failed to induce Ab3, which is mouse anti-anti-Id
[32]. However, active immunization with mouse mono-
clonal anti-SS-B Abs generated from a 16/6 Id immunized
mice, led to the induction of experimental SLE in the
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mice [33]. It is possible that this Ab3 carried a parallel
pathogenic Id to the 16/6 anti-DNA Id.

Anti-Sm Abs

As are anti-dsDNA Abs, anti-Sm Abs are specific for
SLE, but are found only in 25–30% of lupus patients [34].
It is not surprising, therefore, that anti-dsDNA Abs in
patients correlated closely with Abs to Sm A and D sub-
units [35], and many of the anti-dsDNA Abs cross-reacted
with the Sm A and D subunits. Lupus anti-Sm Abs
express interspecies cross-reactive Id: a monoclonal Ab
called Y2 derived from MRL mice has activity against the
Sm ribonucleoprotein; specific rabbit antiserum against
the cross-reactive Id of Y2 was used to probe SLE sera for
this Id. Consequently, 25 of 51 SLE patients seropositive
for anti-Sm Abs had elevated levels of the Y2 Id com-
pared to a normal control group [36]. The anti-Y2 serum
also inhibited the ability of 12 of the 25 anti-Sm positive
sera to bind Sm [37]. Moreover, 41% of SLE patients and
27% of their relatives showed increased serum levels of
the Y2 Id compared to only 6% in normal control group
[38]. A monoclonal Ab carrying the Y2 Id, termed 4B4,
was used successfully in the induction of a SLE-like syn-
drome in BALB/c mice [39].

Pathogenic Role of Abs Carrying Ids

The importance of identifying Id of Abs is their rela-
tion to the disease pathogenesis and clinical manifesta-
tions. The detection of immunoglobulin carrying the anti-
dsDNA 16/6 Id in the skin, kidneys and brain of SLE
patients favors a pathogenic role for this Id [40]. Similar-
ly, the anti-dsDNA Id GN1 and GN2 were found in 38%
and 75% of the biopsy specimens from 32 kidneys of
patients with SLE, respectively, whereas they were found
in only 6% of 19 patients with non-lupus immune glomer-
ulonephritis [41]. Regarding a possible pathogenic role for
anti-Sm Abs, it has been shown that anti-dsDNA Abs
cross-reacting with the Sm A and D subunits are cytotoxic
to cultured kidney cells [42]. There are also a few exam-
ples for the pathogenic role of anti-SS-A Abs: these Abs
are enriched in acid eluates of saline extract of affected
organs from SLE and Sjögren’s syndrome patients [43],
and human IgG containing anti-SS-A Abs can both in-
duce repolarization abnormalities in neonatal rabbit
hearts, and induce conduction abnormalities in adult rab-
bit hearts [44, 45]. With respect to anti-SS-B, the serum
activity of these Abs correlates with the degree of salivary
gland lymphocytic activity [46], and like the SS-A antigen,

the SS-B antigen is also present on the surface of the fibers
of affected hearts, suggesting a pathogenic role for anti-
SS-B in heart block too [47].

Clinical Implications of the Idiotypic Network

in Autoimmunity

Identification of certain Ids on Abs provides some
measures to treat or prevent autoimmune diseases. These
include injection of anti-Ids, injection of anti-Ids conju-
gated to a cytotoxic agent, direct injection of a common Id
with the subsequent production of anti-Ids, passage of
plasma over an anti-Id column, treatment with Id-specific
T-suppressor cells, and intravenous immunoglobulin
(IVIg) [48]. Whereas most of these are still experimental,
the use of anti-Id against certain Abs in autoimmune dis-
eases is practically a fact. When a genetically susceptible
host is exposed to an environmental agent such as a virus,
anti-viral antibodies are generated (Ab1) followed by the
generation of anti-Id (Ab2) and anti-anti-Id (Ab3). When
the normal cascade of Abs generation may be lost, leading
to the emergence of self-reacting Abs, there is a relative
shortage of anti-Ids directed against Ab3 (the pathogenic
anti-anti-Id). IVIg, a therapeutic agent widely used in var-
ious autoimmune diseases, is composed of a pool of
immunoglobulins from numerous donors. One of its
mechanisms of action is manipulation of the idiotypic
network, by providing anti-Ids present within the IVIg
preparation that bind to the Ids found on the patients’
pathogenic Abs [49]. The list of Abs known to be inhibited
by IVIg in vitro include Abs to factor VIII, cardiolipin,
platelet, endothelial cells, C3 convertase, acetylcholine
receptor, mitochondrial antigens, intrinsic factor,
erythroblast, retinal S antigen, DNA, thyroglobulin and
neutrophil cytoplasmic antigens [50]. Whereas IVIg prep-
arations may contain some of the Ids and anti-Ids in-
volved in autoimmunity [51], they do not contain other
Abs [52]. Hence, as IVIg is not specific enough, future
aims of immunotherapy in autoimmune diseases would
be to provide disease-specific and even patient-specific
therapy by means of infusions of one or only few anti-Id in
sufficient concentrations. Since this ‘super-IVIg’ will be
specific, it will probably have higher efficacy than the cur-
rent preparations.
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Abstract

The eukaryotic nucleus is dynamically organized with

respect to particular activities, such as RNA transcription,

RNA processing or DNA replication. The spatial separa-

tion of metabolic activities is best reflected by the identi-

fication of functionally related proteins, in particular sub-

structures of the nucleus. In a variety of human diseases,

the integrity of such structures can be compromised,

thus underlining the importance of a proper nuclear

architecture for cell viability. Besides their clinical rele-

vance, antinuclear autoantibodies (ANAs) have contrib-

uted to a large extent to the identification of subnuclear

compartments, the isolation and cloning of their compo-

nents (the autoantigens), as well a the characterization of

their function. Although sophisticated techniques, such

as confocal laser scanning microscopy (CLSM), fluores-

cence resonance energy transfer (FRET) and in vivo

observation of cellular events have recently been estab-

lished as valuable tools to study subnuclear architecture

and function, cell biologists will continue to appreciate

the specificity and power of ANAs for their research.
Copyright © 2000 S. Karger AG, Basel

Introduction

A hallmark of eukaryotic cells is their separation into
compartments. The nucleus contains many internal nu-
clear domains including the nucleolus, nuclear envelope
(NE), nuclear speckles, coiled bodies, PML nuclear bod-
ies, and gems. This organization most likely reflects the
requirement for spatial and temporal coordination of
many nuclear processes. Nuclear proteins with related
functions, such as DNA and chromatin replication, tran-
scription of RNA or subsequent RNA splicing are often
assembled in multiprotein/nucleic acid complexes and
colocalize at cytological level. They form a dynamic
framework that is able to change its functional organiza-
tion during the cell cycle in order to fulfill altered require-
ments. Over the past 25 years, characterization of antinu-
clear autoantibodies (ANA) has helped identify many
nuclear proteins by their subcellular localization. Epi-
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fluorescence microscopy is a valuable technique for both
the clinician identifying certain autoantibody specifici-
ties, thereby diagnosing subsets of systemic autoimmune
diseases, and the research biologist analyzing the structure
and function of nuclear autoantigens. It enables not just
visualization, but also identification of structures within
cells and tissues. The emitted signal is viewed against a
black background providing high contrast. In addition,
fluorescence imaging can provide superb selectivity.

This review summarizes current cell biological knowl-
edge on the structure, function and dynamics of subnu-
clear compartments that are frequent targets of ANA pro-
duced by patients with systemic rheumatic diseases.

Nuclear Envelope

Autoantibodies to NE antigens were found in 52% of
patients with chronic fatigue syndrome, mainly nuclear
lamins. Combination of nuclear rim staining observed in
indirect immunofluorescence microscopy and immuno-
blot analysis of highly purified proteins provided initial
characterization of these autoantibodies. The occurrence
of autoantibodies to a conserved intracellular protein,
such as lamin B1, provided new laboratory evidence for
an autoimmune component in chronic fatigue syndrome
[Konstantinov et al., 1996; von Mikecz et al., 1997,
reviewed in Bennet, 1998]. In addition, between 10 and
42% of patients with primary biliary cirrhosis have been
reported to have antibodies against gp210, a glycoprotein
of the nuclear pore complex (NPC) [Wesierska-Gadek et
al., 1995; Bandin et al., 1996; Courvalin and Worman,
1997].

The NE is a double-membrane system consisting of an
inner and outer nuclear membrane enclosing a lumen
called perinuclear space. Hence, the NE physically sepa-
rates the genetic machinery residing in the nucleus from
protein synthesis occurring in the cytoplasm. Ultrastruc-
tural and diffusion analyses have documented that the
membranes of the endoplasmatic reticulum (ER) form an
interconnected boundary that includes the outer nuclear
membrane of the NE [reviewed in Gant et al., 1998].
Recent studies have shown that the lumen of the ER and
NE of resting cells is not compartmentalized by mechani-
cal barriers, suggesting that the free calcium concentra-
tion in the lumen of the ER and NE can equilibrate
throughout the cell [Peterson et al., 1998].

In most eukaryotic cells, the nucleoplasmic face of the
NE is lined by a highly dynamic, fibrous meshwork, called
the nuclear lamina. The major molecular constituents of

the nuclear lamina are the nuclear lamins, members of the
intermediate filament protein family. Lamins build a
polymer of four intermediate filament type proteins, lam-
ins A, B1, B2, and C, as well as integral membrane pro-
teins specific to the inner nuclear membrane (LAP1,
LAP2, LBR) [reviewed in Gant and Wilson, 1997; Stuur-
man, 1998]. Results from a number of studies suggest that
lamins may be involved in nuclear events such as DNA
replication through interaction with specific proteins [i.e.
elongation factors; Laskey et al., 1996]. The NE system of
higher eukaryotic cells undergoes complete breakdown in
prometaphase and reassembles in the late anaphase of the
cell cycle [Fields and Thompson, 1995]. However, during
interphase, lamins physically interact with the inner nu-
clear membrane via integral membrane proteins. More-
over, the nuclear lamina interacts with chromatin and is
also physically associated with NPCs [Goldberg and Al-
len, 1995]. NPCs are the major gateways for transport of
cargo, like ions, small molecules, proteins, RNAs and
RNP particles shutteling between the cytoplasm and the
nucleus. NPCs are highly conserved supramolecular as-
semblies with a mass of F125 MD, which are built from
about 100 different polypeptides, many of them autoan-
tigens [Gant et al., 1998]. An ever increasing number of
these ‘nucleoporins’ are being identified, cloned, and their
role in nucleo-cytoplasmic transport explored [Pemberton
et al., 1998; Wozniak et al., 1998], since translocation
through the NPC requires transport factors that tran-
siently associate with nucleoporins en route [Ohno et al.,
1998]. Import of most nuclear proteins is a signal-
mediated, energy-requiring process. Different classes of
nuclear localization signals (NLS) have been identified,
because translocation of karyophilic proteins through
NPC usually requires specific recognition of its NLS by a
corresponding transport factor, such as importin or trans-
portin, and their interaction with nucleoporins [Izaur-
ralde and Adam, 1998; Cole and Hammel, 1998].

By means of confocal laser scanning microscopy, it
became possible to localize single NPCs and analyze their
distribution [Kubitscheck and Peters, 1998]. Specific la-
beling of individual nucleoporins detected by laser confo-
cal or electron microscopy will further reveal the three-
dimensional and molecular architecture of NPCs and elu-
cidate molecular mechanisms of intracellular trafficking
[Görlich, 1998; Nigg, 1997]. In addition, the relative rates
of NLS-green fluorescent fusion protein (NLS-GFP) im-
port and passive export can now be measured directly in
living cells [Roberts and Goldfarb, 1998].
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Histones

Autoantibodies to chromatin are most prevalent in sys-
temic lupus erythematosus (SLE) but also occur in drug-
induced autoimmunity, rheumatoid arthritis, and an un-
differentiated form of connective tissue disease [Robi-
taille and Tan, 1973; Burlingame et al., 1994]. While in
SLE antichromatin antibodies target naked DNA, his-
tones or histone/DNA complexes, the main target of his-
tone antibodies in drug-induced lupus is the H2A-H2B/
DNA complex [reviewed in Burlingame and Rubin,
1996]. Histones are the building units of eukaryotic nu-
cleosomes which are the primary repeating units of chro-
matin. Packaging of nearly 2 m of DNA within the con-
fines of the eukaryotic nucleus represents a mechanistic
and logistic problem of enormous proportions. In addi-
tion, the DNA has to be organized in a manner that allows
the essential processes of DNA replication, repair and
transcription while maintaining a considerable degree of
condensation. Arrays of nucleosomes and their higher-
order complexes, rather than naked DNA, are the sub-
strate for DNA-processing enzymes and DNA-binding
transcription factors [Beato and Eisfeld, 1997; Felsenfeld,
1996]. Recent studies imply that chromatin is highly
dynamic [reviewed in Luger and Richmond, 1998]. The
propensity for folding and refolding of chromatin stems
from the so-called histone fold, an architectural motif
mediating DNA compaction and protein dimerization of
histones and some transcription factors [Arents and Mou-
drianakis, 1995].

The three-dimensional structure of the nucleosome
core has been solved, showing the histone proteins and
DNA in atomic detail [Luger et al., 1997]. A nucleosomal
core contains about 140 bp of DNA, wrapped around a
protein octamer containing two copies each of histones
H2A, H2B, H3, and H4, designated core histones [Wolffe,
1992]. In nucleosome assembly, binding of the H3/H4
tetramer to DNA is followed by assembly of H2A/H2B
dimers. Additionally, histone H1 proteins serve as linker
histones, deriving their name from their association with
the linker DNA which connects nucleosomal cores. His-
tone H1 locks the two helical turns of the DNA around the
nucleosome, thus maintaining higher-order chromatin
structures [Boulikas, 1993]. One copy of histone H1 per
nucleosome promotes a higher-order chromatin structure:
the 1- to 72-amino-acid domain of histone H1 interacts
with three core histones of neighboring nucleosomes,
whereas the 73- to 106-amino-acid segment of H1 con-
tacts histone H2A of its ‘own’ nucleosome and locks the
two ends of DNA around the particle into a closed confor-

mation [Fletcher and Hansen, 1995]. Thus removal of
histone H1 might constitute the first step in chromatin
unfolding and unlocking of nucleosomes.

Despite its similarity to a bead on a string, the building
block of the chromosome is dynamic. The histone amino
termini extend from the core, where they can be modified
posttranslationally by acetylation, phosphorylation and
methylation, which affects their charge and function
[Svaren and Horz, 1996]. Of such modifications, acetyla-
tion and deacetylation have generated most interest, since
gene activity was first correlated with histone acetylation
[Hebbes et al., 1988; reviewed in Grunstein, 1997]. As
acetylation neutralizes the positively charged lysine resi-
dues of the histone N-termini, decreasing their affinity for
DNA, this might allow the termini to be displaced from
the nucleosome, causing the nucleosomes to unfold. This
in turn increases access to transcription factors and leads
to initiation of transcription [Lee et al., 1993]. How acety-
lation and deacetylation targets specific genes or chromo-
somal domains has long been enigmatic. Euchromatin
and heterochromatin exhibit different acetylation pat-
terns. Euchromatin is the chromatin that decondenses
during interphase of cell cycle and which contains most of
the genes coding for cellular proteins. Heterochromatin,
however, is condensed even in interphase, often contains
repetitive DNA, and is generally silent. Histone acetyla-
tion involves histone acetylases (HATs), which are nu-
clear and transcription related. Transcription factors that
can activate or inhibit transcription may do so by asso-
ciating with HATs or deacetylases [reviewed in Pazin and
Kadonaga, 1997; Wade et al., 1997]. For example, nuclear
hormone receptor function, with and without ligand, may
require binding to HATs (e.g. p300/CBP) and to deacety-
lases, respectively [Jenster et al., 1997]. How these events
regulate gene-specific repression, which sites on which
histones they affect and whether they affect all promotors
or chromosomal domains equally remains to be explored.
However, it is certain that histones are important regula-
tors of gene activity.

Centromeres

The centromere (or kinetochor) is an integral part of
human chromosomes and an essential actor in mitotic cell
division. In interphase cells centromeres are evenly dis-
tributed throughout the nucleoplasm (fig. 1). However, a
characteristic feature of centromere distribution is the
formation of prominent clusters organized around the
nucleoli [Ochs and Press, 1992]. A centromere is com-
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Fig. 1. Staining patterns of nuclear compartments. Confocal microscopy images of HEp-2 cells stained with
specific antibodies decorating the indicated nuclear subcompartments (green). Differential interference contrast
(DIC) images (gray) were taken from each cell at the same time and merged with the respective fluorescence
image. Due to differences between the refractive indices of cellular compartments, DIC reveals the cytoplasm
(cy), nucleoplasm (nu), and nucleoli (no) in HEp-2 cells (HEp-2).

posed of a variety of proteins associated with alphoid
DNA. Alphoid DNA belongs to the family of highly repe-
titive sattelite DNA and is specific to centromeres of all
human chromosomes [Mitchell et al., 1985; reviewed in
Csink and Henikoff, 1998]. The centromere modulates
the association of sister chromatids, represents the major
site for the association of the chromosome with the spin-
dle, captures microtubules growing from the spindle pole,
and participates in the regulation of chromosome move-
ment through interaction with the motor-protein complex
[reviewed in Mitchel, 1996; Pluta et al., 1995].

Strategies to examine centromere function and chro-
mosome dynamics include fluorescence in situ hybridiza-
tion (FISH) [Durm et al., 1998], expression of GFP fused
to centromere proteins [Shelby et al., 1996], or yeast two-
hybrid analyses using centromere proteins (CENPs) as
baits (see later). However, initial studies on the structure
and function of centromere and kinetochore components
were aided by the discovery that sera of scleroderma
patients with CREST syndrome contain autoantibodies
against CENPs [Moroi et al., 1980]. Anti-centromere anti-
bodies (CENPs A, B, and C) are typically associated with
Raynaud’s phenomena, telangiectasias, lung involve-
ment, and a significantly younger age of disease onset
[Fritzler, 1993]. Not less than fourteen different autoan-
tigens have been identified to be associated with the

human centromere. Their clinical correlations have re-
cently been reviewed [Rattner et al., 1998].

cDNAs encoding CENP-A, -B, and -C have been
cloned and the proteins have been studied in detail.
CENP-A is a centromere-specific core histone related to
histone H3 [Sullivan et al., 1994]. CENP-B is an alpha-
satellite-binding protein that is localized throughout the
centromeric heterochromatin located beneath the kineto-
chor [Earnshaw et al., 1987]. Assembly studies of the
CENP-B/alpha-satellite DNA show that the dimeric
structure of CENP-B is sufficiently stable to bundle
together two 3.5-kbp DNA fragments in vitro when each
DNA contains a CENP-B DNA-binding motif [Yoda et
al., 1998]. The authors propose that CENP-B functions as
a structural factor in the centromere region in order to
establish a unique, centromere-specific pattern of nucleo-
some positioning. CENP-C is also a DNA-binding protein
and is located at the interface between the centromeric
heterochromatin and the innermost region of the kineto-
chor [Saitoh et al., 1992]. A yeast interaction trap identi-
fied protein HDaxx as a specific CENP-C interactor [Plu-
ta et al., 1998]. HDaxx is homologous to murine Daxx, a
protein identified through its ability to bind Fas, a central
mediator of apoptosis. The specific interaction of HDaxx
with CENP-C suggests that centromeres may play as yet
unsuspected roles in cell cycle progression and, possibly,
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the modulation of cellular responses to apoptotic stim-
uli [Pluta et al., 1998]. Monoclonal antibodies against
CENP-E specifically stain the centromere region of mitot-
ic human chromosomes. Interestingly, in cells progressing
through different parts of the cell cycle, the localization of
CENP-E differs markedly from that observed for CENP-
A, CENP-B, CENP-C and CENP-D. In contrast to these
antigens, anti-CENP-E staining is not detected during
interphase, and staining first appears at the centromere
region of chromosomes during prometaphase [Yen et al.,
1991]. Recently, a 350-amino-acid domain of CENP-E
has been identified that specifies kinetochore binding in
mitosis but not during interphase [Chan et al., 1998]. This
domain was used in a yeast two-hybrid screen to isolate
interacting proteins that included the kinetochore pro-
teins, CENP-F and hBUBR1. hBUBR1 is related to
BUB1, a kinase that was found to be mutated in some
colorectal carcinomas [Cahill et al., 1998]. Chan et al.,
1998 [reviewed in Grancell and Sorger, 1998] found that
CENP-F, hBUBR1, and CENP-E assemble onto kineto-
chores in sequential order during late stages of the cell
cycle and suggest that this complex is responsible for
defining discrete steps along the kinetochore assembly
pathway and to function as a motor-kinase complex at
kinetochores. Recently, a new centromere-specific pro-
tein (CENP-G) has been identified as a result of its recog-
nition as an autoantigen by serum from a patient with gas-
tric antral vascular ectasia disease [He et al., 1998]. The
localization of this new centromere protein and its alpha-
1 DNA-specific association suggest that CENP-G may
play a role in kinetochore organization and function.

In the future, successful construction of artificial chro-
mosomes will be an important step for studies to elucidate
the DNA and protein elements necessary for chromosome
structure and function. The development of human artifi-
cial chromosome systems should also facilitate investiga-
tion of the DNA and chromatin requirements for active
centromere assembly [reviewed in Willard, 1998].

Nuclear Speckles

Splicing of pre-mRNA occurs in a large RNA-protein
complex, the spliceosome. Spliceosomes consist of small
nuclear ribonucleoprotein particles (snRNPs), assemble
on pre-mRNA molecules, catalyze the removal of introns,
and subsequently dissociate from the mature mRNA
[Maniatis and Reed, 1987; Tarn and Steitz, 1997]. The
immunological and biochemical features of snRNP anti-
gens were elucidated by the important studies by Lerner

and Steitz [1979], who introduced the tools of molecular
biology into this field and showed that these autoantigens
were subcellular particles composed of a species of small
nuclear RNAs (UsnRNAs) complexed with protein. Au-
toantibodies against snRNPs occur predominantly in sera
from patients with SLE or mixed connective tissue dis-
ease [reviewed in Tan, 1989; van Venrooij and Sillekens,
1989]. Many studies have addressed the question of
where in the interphase nucleus the splicing components
are localized. Initial work made use of autoimmune sera
that contained antibodies against snRNPs [Spector, 1984;
Nyman et al., 1986; Verheijen et al., 1986]. Recently,
antibodies against the non-snRNP-splicing factor SC35
have become the general marker for the analysis of the
distribution of the splicing machinery in nuclei [Fu and
Maniatis, 1990]. Immunocytochemical studies have
shown that pre-mRNA splicing is localized in a speckled
nuclear pattern (fig. 1) that corresponds to interchromatin
granule clusters and perichromatin fibrils [reviewed in
Puvion and Puvion-Dutilleul, 1998]. While perichroma-
tin fibrils are thought to represent RNA transcripts, little
to no transcription is associated with the majority of the
interchromatin granule clusters [Spector, 1996]. One
function of interchromatin granule clusters is to provide
pre-mRNA splicing factors to sites of transcription. Au-
toantibodies stain snRNPs showing a speckled labeling
against a more diffuse background of nucleoplasmic stain-
ing [Spector, 1993]. The diffuse staining pattern is largely
due to snRNPs interacting with nascent RNA and disap-
pears when transcription is inhibited [Bauren and Wies-
lander, 1994]. Cells showing high transcription exhibit
more widespread nucleoplasmic localization of RNA-pro-
cessing factors and less speckled staining, whereas re-
duced transcription is often accompanied by increased
speckled staining [Zeng et al., 1997]. The mRNAs from
some highly transcribed genes have been shown to colo-
calize with snRNP/SC35 speckles, whereas inactive genes
do not, suggesting that speckles can be actively involved
in splicing [Huang and Spector, 1991; Zhang et al., 1995].
However, the spatial organization of transcription and
splicing in the mammalian nucleus, especially the impor-
tance of speckles is still under debate [Singer and Green,
1997; Lamond and Earnshaw, 1998].

Recent findings provide interesting new insights into
structure/function relationships of mRNA processing
with respect to nuclear speckles: a differential display
assay used to identify cellular genes differentially ex-
pressed during human immunodeficiency virus 1 (HIV-1)
infection revealed that the expression of SC35 is altered
by HIV infection [Maldarelli et al., 1998]. These findings
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indicate that an essential splicing factor is induced after
HIV infection, suggesting that the consequences of HIV
infection include alterations in relative levels of a splicing
factor [Maldarelli et al., 1998]. A new class of splicing fac-
tors has recently been identified in yeast that are members
of the DEAD box family of ATP-dependent putative
RNA helicases and which are required for pre-mRNA
splicing in Saccharomyces cerevisiae [reviewed in Hamm
and Lamond, 1998]. A human homolog has been shown
to be involved in splicing events and to localize to speck-
les in human cell lines [Ortlepp et al., 1998]. Since RNA
helicases can change RNA conformation, the newly dis-
covered splicing factors containing such domains are
believed to be essential for spliceosome assembly [Hamm
and Lamond, 1998]. Schul et al. [1998] have found that a
subset of poly(A) polymerase is concentrated at sites of
RNA synthesis and domains enriched in splicing factors,
indicating that there is a spatial and structural relation-
ship between the 3) processing of mRNAs and the nuclear
speckles. Finally, a study performed in living cells has
shown that upon transcriptional activation of an inte-
grated viral genome, the splicing factors present in speck-
les are rapidly recruited to the sites of active viral tran-
scription, clearly demonstrating that one function of
speckles is to supply splicing factors to neighbor active
genes [Misteli et al., 1997]. Phosphorylation of splicing
factors seems to be instrumental for the recruitment of
these proteins to active sites of transcription in vivo [Mis-
teli et al., 1998]. The picture that emerges is that the
nuclear distribution of splicing components is highly dy-
namic and might reflect an arrangement optimally suited
to provide transcripts with splicing factors anywhere in
the nucleus.

Nucleoli

Ribosomal RNA (rRNA) gene expression and assem-
bly of mature ribosomes take place in a cytologically dis-
tinct subcompartment of the nucleus, the nucleolus [Perry
et al., 1961; Hadjiolov, 1985]. Nucleolus formation is
dependent both on transcription and cell cycle: in most
eukaryotic cells, the entire structure breaks down and
reforms during each mitotic cycle. Thus, the nucleolus is a
dynamic structure that forms in response to the require-
ment of new ribosome synthesis [Melese and Xue, 1995].
Ribosomal RNA in eukaryotes is synthesized as a 40S
precursor that is subsequently cleaved to give rise to
mature 18S, 5.8S and 28S ribosomal RNA which in turn
is assembled with ribosomal proteins to preribosomal par-

ticles. Those preribosomes built up to the ribosomal sub-
units and have to be transported out of the nucleus into
the cytoplasm where they serve in protein biosynthesis
[Hadjiolov, 1985]. To this day, a number of nonribosomal
nucleolar proteins have been identified, some of which
are autoantigens in systemic sclerosis [Bunn et al., 1988;
reviewed in Lee and Craft, 1995]. The transcription of
ribosomal DNA is mediated by RNA polymerase I (RNA
pol I). Autoantibodies to RNA pol I are present in at least
4% of patients with scleroderma [Reimer et al., 1987]. A
molecular mechanism by which RNA pol I activity can be
regulated was found recently. Milkereit and Tschochner
[1998] showed that RNA pol I can form a functional com-
plex with the pol-I-specific initiation factor Rrn3 in yeast.
Formation and disruption of the pol I-Rrn3p complex
seem to reflect a molecular switch for regulating rRNA
synthesis and its growth-rate-dependent regulation. Au-
toantibodies against NOR-90 (identical to hUBF, human
upstream binding factor) were first identified using scle-
roderma sera that stained nucleoli in multiple discrete
dots and the nucleolar organizer region (NOR) on several
chromosomes [Rodriguez-Sanchez et al., 1987]. hUBF
together with selectivity factor SL1 are transcription fac-
tors required for RNA-pol I function in mammalian cells
[Bazett-Jones et al., 1994; Schnapp and Grummt, 1991].
In Xenopus laevis transcription of ribosomal genes by
RNA pol I is directed by a stable transcription complex
that forms on the gene promoter. As part of this complex,
UBF has been shown to be a transcriptional enhancer
[Sullivan and McStay, 1998]. Anti-PM-Scl antibodies
were first described in patients with polymyositis, and
scleroderma [Lee and Craft, 1995 and references therein].
PM-Scl is believed to be involved in ribosome biogenesis.
The yeast homolog of human PM-Scl, rRNA-processing
protein 6 (Rrp6), has been shown to be essential for 5.8S
rRNA maturation [Briggs et al., 1998]. PM-Scl may also
have functions outside the nucleolus, since it is also local-
ized to distinct nucleoplasmic foci and can activate tran-
scription through specific interaction with transcription
factors E12 and E47 in vivo [Kho et al., 1996]. Other
autoantigens with nucleoplasmic and/or nucleolar func-
tion include topoisomerase I, Th snoRNP, and Ku [re-
viewed in Lee and Craft, 1995]. Fibrillarin is a highly con-
served nucleolar autoantigen of 34 kD, which localizes to
the dense fibrillar component of the nucleolus [Ochs et al.,
1985, fig. 1]. Autoantibodies to fibrillarin serve as specific
markers for scleroderma. A recent study found anti-fibril-
larin antibodies in 8% of 335 systemic sclerosis sera and
significantly more common in blacks (16%) than whites
(5%), in males (33%) than females (14%), and in patients
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with cardiac, renal, or intestinal involvement [Arnett et
al., 1996]. Fibrillarin seems to be involved in many
nucleolar processes, such as the first steps of rRNA pro-
cessing, pre-rRNA modification and ribosome assembly.
Several small nucleolar RNAs (snoRNAs) involved in
pre-rRNA cleavage (U3, U8, U14 and U22) or rRNA
methylation (U14, U18 and U24-U63) physically asso-
ciate with fibrillarin [Tyc and Steitz, 1984]. Fibrillarin
localizes to the transcription sites in nucleoli and to coiled
bodies, suggesting an interrelationship between these
structures (fig. 1). Nucleolin and B23/NO38 have also
been shown to localize to both, coiled bodies and nucleoli
[Raska et al., 1991]. In addition, mutant forms of p80
coilin induced nucleolar disorganization upon transfec-
tion into cell lines, supporting the idea of an intimate con-
nection between coiled bodies and the nucleolus [Boh-
mann et al., 1995]. Recent findings from the laboratory
of Tom Meier show that nucleolar phosphoprotein
NOPP140 may function as a molecular link between the
two prominent nuclear organelles. Exogenous NOPP140
accumulated rapidly in the nucleolus, but only after a lag
phase in the coiled bodies, suggesting a pathway between
the two organelles [Meier and Blobel, 1992]. Moreover, its
association with major nucleolar proteins (e.g. fibrillarin)
suggests that NOPP140 may serve as a chaperone in
nucleoplasmic transport.

Recently, essential non-rRNA processing events have
been identified to be associated with the nucleolus, in-
cluding the export of a subset of mRNAs, processing of
the signal recognition particle, telomerase RNP assembly,
and transfer RNA maturation. These new data reveal the
nucleolus as a multifunctional organelle and add a new
perspective to our current picture of the spatial-functional
design of the cell nucleus [Pederson, 1998].

Coiled Bodies

Coiled bodies are small nuclear organelles, generally
0.15–1.5 Ìm in diameter [Monneron and Bernhard,
1969], found in a variety of animal and plant cells. They
disassemble during mitosis and reform during G1 phase
after transcription is initiated [Ferreira et al., 1994].
Coiled bodies are characterized by the presence of a
unique protein, p80 coilin, an autoantigen in patients
with diverse autoimmune features [Andrade et al., 1991],
along with nucleolar proteins, fibrillarin and NOPP140
and components involved in three different RNA-pro-
cessing pathways: splicing, pre-rRNA processing, and his-
tone pre-mRNA processing [reviewed by Lamond and

Carmo-Fonseca, 1993; Lamond and Earnshaw, 1998;
Matera, 1998]. However, their protein composition might
differ slightly in different cell lines [Alliegro and Alliegro,
1998]. Coiled bodies vary in number from 1 to 10 per
nucleus being most prominent in rapidly growing cells
[Andrade et al., 1993]. Coiled bodies are often seen adja-
cent to nucleoli in the nucloplasm. Electron-microscopic
studies have shown fibers connecting coiled bodies to the
nucleolar periphery which may serve as nuclear highways
for snRNP traffic [Puvion-Dutilleul et al., 1995]. They
not only contain high concentrations of snRNPs, as
judged by anti-Sm antibodies, but also colocalize with
specific DNA loci which include histone and snRNA
genes [Matera and Ward, 1993; Smith et al., 1995]. The
function of coiled bodies is still under debate, but it has
been speculated that coiled bodies may be sites of splicing
factor assembly and/or recycling, or may play a role in
histone mRNA 3) processing [Wu and Gall, 1993; Frey
and Matera, 1995]. It has recently been shown that coiled
bodies are involved in processing or transport of snoRNA
precursors [Gerbi and Borovjagin, 1997]. They may also
act as nuclear transport or sorting structures. Coiled-
body-like structures called ‘gems’ (gemini of coiled body)
have recently been shown to be associated with coiled
bodies [Liu and Dreyfuss, 1996]. Gems contain the sur-
vival of motor neuron (SMN) protein, encoded by the
gene responsible for a severe inherited form of human
muscular atrophy [reviewed in Levebvre et al., 1998]. The
SMN protein interacts with Sm class snRNP proteins,
plays an essential role in cytoplasmic snRNP biogenesis
[Fischer et al., 1997] and binds to single-stranded nucleic
acids [Lorson and Androphy, 1998]. Defects in spliceoso-
mal snRNP assembly may be involved in spinal muscular
atrophy, and an intranuclear snRNP trafficking pathway
may involve interactions between gems and coiled bod-
ies.

PML Nuclear Bodies

The nucleus is separated into largely nonoverlapping
chromosomal territories. Additional specific nuclear do-
mains may permeate these territories or exist as interchro-
mosomal or interchromatinic domains subdividing the
nuclear space structurally and functionally. PML nuclear
bodies also known as nuclear dots or nuclear domain 10
(ND10) correspond to nuclear bodies, some of which are
ultrastructurally recognizable because they displace chro-
matin. They display as discrete punctate structures (fig. 1)
and appear to be firmly attached to the nuclear matrix.
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A typical mammalian nucleus has F10–20 PML bodies,
which vary in size from F0.3 to 1 Ìm. PML nuclear bod-
ies were first recognized with antibodies against SP100,
an autoantigen in primary biliary cirrhosis. In primary
biliary cirrhosis ANA against 5–15 nuclear dots are found
in 10–40% of cases. Most of these autoantibodies recog-
nize Sp100 [Szostecki et al., 1990]. However, autoanti-
bodies targeted against another component of PML bod-
ies, namely PML protein, occur frequently in patients
with primary biliary cirrhosis and at a low frequency in
patients with SLE [Andre et al., 1996]. Anti-Sp100 and
anti-PML antibodies are directed against proteins which
share the same subnuclear localization: PML nuclear bod-
ies. Proteins within the same functional complex or
organelles are often common targets of autoimmune re-
sponses, such as Sm and U1snRNP in SLE. Failure of
immune tolerance toward both Sp100 and PML proteins
may derive from the fact that both can be induced by
estrogen and interferons [Koken et al., 1994]. These fea-
tures are remarkable as ANA-associated diseases, are pre-
dominantly found in women and proposed to be triggered
by viruses.

The PML protein forms part of the oncogenic PML-
RAR· (RAR· = retinoic acid receptor alpha) hybrid pro-
tein associated with acute promyelocytic leukemia. In
acute promyelocytic leukemia, nuclear bodies are dis-
rupted and replaced by a micropunctate pattern in which
PML, PML-RAR·, and the steroid receptor RXR asso-
ciate in many nucleoplasmic foci [Dyck et al., 1994].
Remarkably, retinoic acid and aresenic trioxide, both of
which are used in clinical treatment of patients with acute
promyelocytic leukemia induce reformation of PML bod-
ies and trigger degradation of PML-RAR· in acute
promyelocytic leukemia cells in culture [Müller et al.,
1998]. This points to an intimate relationship between
nuclear organization in acute promyelocytic leukemia
blasts and the malignant phenotype.

The role of PML bodies is unknown. They are not
major sites of transcription, they lack snRNPs and pro-
tein splicing factors and contain little or no replication
DNA during S phase. Interferon treatment upregulates
PML and Sp100 and several viral proteins also associate
with PML bodies. Infection with herpes simplex virus
type I, adenovirus and human cytomegalovirus disrupts
PML bodies, suggesting that they may play some role in
antiviral defense [Everett and Maul, 1994]. The PML pro-
tein exists in two forms: in a ‘free’ form that is dispersed
throughout the nucleoplasm and as a conjugate with the
ubiquitin-like protein SUMO1 (small ubiquitin-like mod-
ifier) [Sternsdorf et al., 1997; Müller et al., 1998]. The

PML-SUMO1 conjugate is exclusively localized in PML
bodies, suggesting that linkage of PML to SUMO1 may ei-
ther stabilize or promote the assembly of PML bodies.
Conjugation to SUMO appears to direct protein localiza-
tion rather than degradation. Posttranscriptional conjuga-
tion with SUMO1, and perhaps with other members of
the ubiquitin-related protein family, may thus be a gener-
al mechanism directing protein assembly into specific
nuclear structures [Lamond and Earnshaw, 1998]. Kama-
tini et al. [1998, and references therein] have shown that
wild-type PML, but not PML-RAR·, can be covalently
modified by the sentrin family of ubiquitin-like proteins.
These studies demonstrate that sentrinization of PML
can regulate nuclear body formation providing novel
insight into the pathobiochemistry of acute promyelocytic
leukemia, the sentrinization pathway, and regulatory
mechanisms of PML body formation.

Conclusion/Outlook

New techniques to study ANA specificities or structure
and function of corresponding nuclear autoantigens
emerge: immunofluorescence is generally applied to fixed
specimens, but recently there have been a number of fluo-
rescent techniques that can be applied to living speci-
mens. Purified proteins can be derivatized with a fluoro-
phore yet still retain their function. These derivatized pro-
teins may be injected back into a cell, thereby enabling the
dynamic behavior of the protein to be observed by fluo-
rescence microscopy. Cells and organisms may be trans-
fected with the gene for the naturally fluorescent GFP
[Chalfie et al., 1994]. An autoantigen under investigation
may be cloned by fusion with the GFP gene and the distri-
bution of the chimeric protein within a cell observed by
GFP fluorescence. Fluorescence in turn may be visualized
by confocal microscopy. Confocal microscopes differ
from conventional (wide-field) microscopes because they
do not ‘see’ out-of-focus objects. In a confocal microscope,
most of the out-of-focus light is excluded from the final
image, greatly increasing the contrast, and hence the visi-
bility of fine details in the specimen. Thus, confocal
microscopy may lead to a refined analysis of nuclear
autoantigens, thereby providing new opportunities for
diagnosis of systemic rheumatic diseases and identifica-
tion of (new) autoantigens which may have been missed
by conventional immunofluorescence. Moreover, new
techniques may promote the discovery of novel nuclear
organelles. The recently defined nuclear bodies called
gems are an example for such a discovery. Gems are simi-
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Fig. 2. Triple staining of cellular structures. HEp-2 cells were pro-
cessed for immunofluorescence staining using antibodies against
RNA-polymerase II (red), CBP/p300 (green), and DNA (blue).
Images for each fluorescent dye were taken with a confocal laser
microscope (Zeiss LSM 510) at the same time and merged digitally.
In mitotic cells (along the diagonal axis) nuclear RNA-pol II speckles
are spatially separated from CBP/p300 staining in the cytoplasm. In
interphase cells, however, RNA-pol II colocalizes with CBP/p300 in
some of the speckles (yellow, or white if DNA colocalizes) [von
Mikecz and Hemmerich, in preparation].

lar in number and size to coiled bodies and are commonly
found associated with them. Among other proteins, gems
contain SMNs which are directly linked to spinal muscu-
lar atrophy, one of the most common human genetic dis-
eases. SMN is involved in the nuclear organization of
snRNPs and in pre-mRNA splicing [Fischer et al., 1977],
suggesting a functional relationship between gems, coiled
bodies and the splicing machinery.

In dual immunofluorescence labeling experiments it is
possible to determine the colocalization of nuclear struc-
tures (fig. 2), yet this does not prove an intimate physical
relationship between the stained antigens. The solution to
this problem might be the fluorescence resonance energy
transfer technique (FRET). FRET is used for quantifying
the distance between two molecules conjugated to differ-
ent fluorophores [Szollosi et al., 1998]. By combining
optical microscopy with FRET it is possible to obtain
quantitative temporal and spatial information about the
binding and interaction of proteins, lipids, enzymes,
DNA and RNA in vivo [Gordon et al., 1998]. In conjunc-
tion with the recent development of a variety of mutant
GFPs, FRET microscopy provides the potential to mea-

sure the interaction of intracellular molecular species in
intact living cells where the donor and acceptor fluoro-
phores are actually part of the molecules themselves [Day,
1998]. Future studies will illuminate the basic principles
underlying nuclear organization and will increase our
understanding of how disruptions of this organization
contributes to human disease, and notably to systemic
autoimmune diseases.

Despite these technical advances, the events that ini-
tially trigger autoantibody production in systemic rheu-
matic diseases are not yet known. It seems likely that they
do not merely represent epiphenomena of systemic au-
toimmune syndromes, because ANA segregate by syn-
drome: anti-nucleolar ANA in systemic sclerosis, anti-
DNA/histone ANA in SLE. Rather, it is logical to assume
that the origin of autoantibodies against nuclear compo-
nents is linked to the etiology of systemic autoimmunity.
Alteration of structure and change in the molecular con-
text (= subcellular redistribution) of autoantigens may
permit the efficient processing/presentation of previously
cryptic determinants, thus breaking the tolerance of the
immune system to self-determinants. The unique autoan-
tibody response observed in the different autoimmune
diseases may therefore be viewed as the time-averaged
immunologic memory of the altered circumstances that
initially revealed this cryptic structure and subsequently
exposed these autoantigens to drive the ongoing immune
response [as cited in Rosen et al., 1997].
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Abstract

Systemic lupus erythematosus is an autoimmune dis-

ease of unknown etiology. Research efforts of the last

few years have mainly focused on basic molecular and

cellular pathogenetic processes of the disease. Conse-

quently, this paper reviews the etiopathogenetic hall-

marks, such as impaired amount and presentation of

nuclear antigens, production of antinuclear antibodies

by T-cell-dependent B cell stimulation and organ dam-

age by anti-dsDNA antibodies or immune complexes

that are discussed at the present time. In summary, the

hypothesis of a dysregulation of apoptotic cell clearance

is strongly supported and broadly discussed.
Copyright © 2000 S. Karger AG, Basel

Introduction

Systemic lupus erythematosus (SLE) is an autoim-
mune rheumatic disease clinically characterized by a
broad diversity of different symptoms. The incidence of
this disease in Europe is roughly 1 in 10,000 persons.

Based on novel therapeutic principles, most of the pa-
tients will experience a remission and more than 50% of
SLE patients are still alive after a 5-year follow-up [1]. The
serological hallmark, the appearance of anti-dsDNA anti-
bodies associated with a lot of other autoantibody speci-
ficities, suggest polyclonal B cell activation.

The etiopathogenesis of SLE, although not yet fully
understood, is doubtless a multifactorial event. Environ-
mental factors, including viruses and other infectious
agents, drugs, chemicals as well as occupational exposure
and food [2], in association with a defined genetic back-
ground [3], might lead to profound alterations of the
immune system. Changes in the immune system include
the appearance of different autoantibodies with different
specificity, altered T cell function, as well as a defective
phagocytosis and changes in oncogens [4]. Based on inten-
sive research during the last decades, three main mecha-
nisms might contribute to the development of SLE:
(1) increased amounts and abnormal presentation of po-
tential autoantigens including nuclear antigens; (2) T-cell-
dependent stimulation of B cells for the production of
antinuclear antibodies, and (3) anti-dsDNA as well as
immune-complex-mediated organ damage.

In the present review, we discuss how these mecha-
nisms might be initiated and contribute to the induction
and maintenance of SLE (fig. 1).
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Fig. 1. Does dysregulation of apoptosis lead to SLE?

Increased Amounts and Abnormal Presentation

of Nuclear Antigens

A dysregulation of apoptosis (programmed cell death)
might be responsible for the induction of nuclear anti-
bodies frequently found in SLE. This hypothesis is partly
based on experiments with MRL/lpr mice, an animal
model for SLE. In this mouse strain, the mean mechanism
leading to an SLE-like disease was a genetic defect defined
in a deficient expression of the membrane molecule Fas/
Apo-1 (CD95). Ligation of this molecule was shown to
induce apoptosis in various cells. Insufficient elimination
of lymphocytes was observed in Fas/Apo-1-deficient ani-
mals, leading to the assumption that autoreactive lym-
phocytes could survive and consequently cause autoim-
mune phenomena [5]. However, in human SLE, the Fas/
Apo-1-dependent apoptosis pathway was shown to be
unaffected [6]. Patients with a defect in the Fas/Apo-1
molecule develop non-malignant lymphoproliferation ac-
companied by hemolytic anemia and other autoimmune
symptoms, referred to as Canale-Smith syndrome [7–9].

In contrast to MRL/lpr mice or patients with a Canale-
Smith syndrome, showing prolonged survival of potential
autoreactive lymphocytes (due to a defective clearance of
these cells by apoptosis), reports have been published that
discussing a clearance defect of apoptotic cells as a possible
major event in the etiopathogenesis of this disease entity.
This hypothesis is based on the observation that in the exe-
cution phase of apoptosis, nuclear autoantigens can be
detected in surface blebs [10, 11]. Thus, potential autoan-

tigens might be sequestered during apoptosis and become
accessible to immune competent cells. There might be two
major mechanisms that could lead to an increased amount
of circulating nuclear antigens in SLE: increased apoptosis
or decreased clearance of apoptotic cell material as an
important etiopathogenic event in SLE.

Various studies have demonstrated increased apopto-
sis of in-vitro-cultured blood mononuclear cells of SLE
patients. However, this effect was reported not to be spe-
cific to SLE patients, since similar data were obtained in
patients with systemic vasculitis or patients with mixed
connective tissue disease; however, these observations are
in contrast to a normal rate of apoptosis in peripheral
blood mononuclear cells in rheumatoid arthritis patients
[12]. The increased rate of apoptosis of peripheral blood
mononuclear cells in SLE patients could be diminished by
feeding the cultures with IL-2. This finding suggests that
the increased apoptosis in peripheral blood mononuclear
cells and specifically in lymphocytes of SLE patients is
due to an increased number of circulating activated lym-
phocytes rather than to a disease-specific increased apop-
tosis. Interestingly, lymphocytes of SLE patients with bac-
terial infections, as indicated by increased CRP, exhibit
increased spontaneous apoptosis of peripheral blood
mononuclear cells [12] which could account for the clini-
cal observation that a flare of SLE could follow an infec-
tious episode [13, 14]. Thus, in summary, there is no evi-
dence for increased spontaneous apoptosis of peripheral
blood mononuclear cells in SLE patients, not suffering
from a concomitant bacterial infection.
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Concerning the clearance of apoptotic cells, we were
able to demonstrate that in vitro differentiated macro-
phages from SLE patients show a significantly reduced
phagocytosis of apoptotic cells, leading to the accumula-
tion of secondary necrotic cells [15]. This finding might
explain the increased levels of early apoptotic cells, DNA
and nucleosomes observed in the circulation of SLE
patients [16–19]. Since keratinocytes show an increased
rate of apoptosis after UV irradiation [20], keratinocytes
might also contribute to the presence of potential nuclear
autoantigens in the skin after sun exposure.

Since components of the cellular nucleus are self-anti-
gens, the immune system usually does not respond to
these antigens. In this context, it is of interest that also
double-stranded (ds) DNA is not immunogenic per se
[21]. The mechanism of the immune response against
nuclear particles in patients with SLE is not completely
understood. One possible explanation would be that
phagocytosis and degradation of apoptotic cells by macro-
phages are usually fast and efficient. Therefore nuclear
antigens do not come into contact with cells of the
immune system. In the case of SLE patients, the impaired
clearance of apoptotic cells resulting in an accumulation
of late apoptotic and secondary necrotic cells, including
oligonucleosomes, might lead to activation of autoreac-
tive T cells with subsequent anti-dsDNA antibody pro-
duction [22]. However, increased amounts of nucleo-
somes were found in sera of patients undergoing hemo-
dialysis, chemotherapy or irradiation treatment without
leading to induction of an immune response [23–25]. This
shows that an increased amount of nuclear antigen alone
is not sufficient to induce an SLE-like autoimmune
response.

The hypothesis that structural changes in DNA or in
nucleosomes may induce an autoimmune response is
based on experiments with drugs known to cause a tran-
sient form of SLE [26]. In addition, it was reported that
some DNA molecules with low cytidine methylation dis-
play increased immunogenicity and induce autoimmune
phenomena, including the synthesis of antibodies against
dsDNA as well as immune-complex glomerulonephritis
[13, 26]. There are many reports on modifications of
nuclear antigens that may lead to increased immunoge-
nicity of nuclear antigens, e.g. phosphorylation or dephos-
phorylation [25, 27], citrullization [28], oxidative stress in
combination with heavy metals [29], mercury intoxica-
tion [30–32], the activation of transglutaminases [33], or
acetylation [25]. In addition, Rosen et al. [11] were able to
show that in Sindbis-virus-induced apoptosis of keratino-
cytes viral and nuclear cellular antigens were colocalized

in the apoptotic surface blebs. Thus it can be speculated
that an immune response that is initiated against viral
antigens may extend and target adjoining components of
the cellular nucleus. This phenomenon, called ‘epitope-
spreading’, could be observed in mice and rabbits infected
with BK virus. In this animal model it was shown that
autologous dsDNA can be rendered immunogenic
through complex formation with viral DNA binding pro-
tein(s), such as structural protein VP1. The formation of
autoantibodies specific to dsDNA and histones could be
observed [34, 35]. Immunization studies on rabbits and
mice with fragments of the autoantigen Sm-B typical of
SLE confirmed the possibility to induce autoantibodies
recognising dsDNA by DNA protein complexes [36].

Meanwhile at least 39 proteins are known which are
proteolytically cleaved during apoptosis and thereby
probably modified in their immunogenicity. Seventeen of
these proteins – many of them components of complex
particles – are frequently targeted by autoantibodies of
SLE patients [25]. Since minor changes in protein struc-
tures (e.g. proteolytic cleavage) may dramatically change
the epitope hierarchy for antigen presentation, caspase
activity in apoptosing cells may render cryptic epitopes
immunodominant and lead to antigen presentation of
epitopes to which the immune system has not achieved
tolerance [37, 38].

T-Cell-Dependent Stimulation of

B Cells for the Production of Antinuclear

Antibodies

Characteristics of Monoclonal Human Anti-dsDNA

Autoantibodies

The fact that serum titers of anti-dsDNA antibodies
might mirror the disease activity of SLE has prompted
intensive research on the pathogenic role as well as on the
origin of anti-dsDNA antibodies which were first de-
scribed more than 25 years ago [39]. With regard
to mechanisms inducing anti-dsDNA antibodies, several
reviews have been published [40, 41].

The establishment of anti-DNA hybridomas from SLE
patients based on modern technologies and the analysis of
the immunoglobulin variable genes have contributed im-
portant information on possible induction mechanisms.
Initially, it was reported that even normal individuals are
able to express anti-dsDNA antibodies with a specificity
similar to that of SLE patients. However, recently pub-
lished studies clearly indicate that the anti-dsDNA anti-
bodies demonstrated in healthy people are mainly of the
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IgM isotype and have low affinity for DNA, and particu-
larly for dsDNA. These antibodies are so-called ‘natural
autoantibodies’ and are characterized by wide cross-reac-
tivity and germline-encoded immunoglobulin gene se-
quences. In the mouse, at least part of these natural
autoantibodies are produced by CD5+ or Ly1+ B cells,
respectively. The physiological role of naturally occurring
autoantibodies is still under discussion. One possibility is
that these antibodies present first-line defense mecha-
nisms against invading microorganisms. In addition, it is
of interest that this B cell subset was reported to be of
importance for antigen presentation to T cells. This was
shown for rheumatoid factor-secreting B cells [42] and
more recently in a transgenic mouse model [43]. Natural
antibodies secreting B lymphocytes constitute a large pro-
portion of the fetal B cell repertoire and contribute to nat-
ural immunity in the developing immune system and may
participate in shaping the adult B cell repertoire [44].

In contrast to naturally occurring antibodies, anti-
dsDNA antibodies involved in the pathogenesis of SLE
patients are of the IgG isotype, with a high affinity for
dsDNA. They are only seldom detectable in normal sera.
Detailed studies of hybridomas reflecting pathogenic
anti-dsDNA antibodies established from lupus-prone
mice [45] and from SLE patients [46, 47] revealed that the
IgG-anti-dsDNA antibody response bears all the charac-
teristics of an antigen-driven, T-cell-dependent immune
response. Molecular analyses of human anti-dsDNA anti-
body clones revealed somatic mutations in the comple-
mentarity-determining regions (CDRs), the site of antigen
contact. It is of special interest that a significant exchange
towards the amino acids arginine and asparagine occurs
in the CDRs; this exchange is particularly important for
dsDNA binding, most likely due to electrostatic interac-
tion. The bias towards arginine and asparagine had been
generated by typical reading frame usage of the D ele-
ments, by frameshifts in the VÎ-J-Î junction, or by somat-
ic mutations.

A review on human anti-dsDNA monoclonal anti-
bodies has recently been published [48], indicating that
there is no VH restriction within IgM antibodies. In con-
trast, IgG anti-DNA antibodies appear to use mainly
members of the VH3 or VH4 family. Whether this
restricted usage is only a reflection of a limited number of
established IgG monoclonals remains open to discussion.
Î and Ï light gene isotypes are represented normally, no
specific VÎ or VÏ members were shown to be prominent.

The nature of epitopes recognized by anti-dsDNA anti-
bodies is still a matter of debate. When SLE sera and
human monoclonal anti-dsDNA antibodies were em-

ployed to analyze their preferential recognition site on
DNA molecules, anti-dsDNA antibodies derived from
SLE patients preferentially selected sequences expected to
form nonrandom B-DNA structures. In addition, compe-
tition studies applying the Farr assay confirmed the
increased affinity of selected epitopes for anti-dsDNA
antibodies as compared to random B-DNA. From these
data it can be concluded that bent DNA with in-phase
adenosine triplets might be implicated in the induction
and maintenance of anti-dsDNA antibody responses
[49].

Role of T Cell Induction of Anti-dsDNA Antibodies

It is well established that affinity maturation, memory
formation and isotype switch are T-cell-dependent im-
mune processes. The similarity of anti-dsDNA response
in murine and human SLE strongly support the hypothe-
sis of the involvement of T helper cells in this pathogene-
sis [50–53]. In addition, histone-specific T cell clones
were established from healthy donors and SLE patients,
which were able to induce autologous cultured B cells to
secrete anti-dsDNA antibodies [22, 54]. Since autoreac-
tive T cell clones and T cell lines can also be established
from nonautoimmune individuals, the question of the
nature of the antigen or peptides stimulating the prolifera-
tion of T cell remains elusive. In addition, the specificity
of help for anti-dsDNA antibody production appears not
yet established, since in vivo activation of anti-dsDNA
reactive B cells or simply a higher precursor frequency of
anti-DNA reactive B cells in autoimmune individuals
might result in in vitro anti-dsDNA production mediated
by the secretion of certain lymphokines providing non-
specific help by T cells. In this context, the recent report
by Naiki et al. [52] is of interest, indicating that T helper
clones from autoimmune mice, which were able to pro-
vide help for anti-dsDNA production, produced IL-4 but
not interferon-gamma and could therefore be classified as
belonging to the TH2 phenotype [52].

Using either autologous apoptotic cells or isolated his-
tones, we were able to induce T cell proliferation in
peripheral blood mononuclear cells isolated from normal
healthy donors or patients with SLE [22]. Cloning of these
T cells confirmed that histones were targeted by some of
these T cell clones. These results show that increased con-
centrations and/or an abnormal presentation of nuclear
antigens are able to stimulate autoreactive peripheral T
cells in vitro. In coincubation experiments we were able to
demonstrate that coincubation of the histone-specific T
cells with autologous B cells induces the production of
anti-dsDNA autoantibodies. These results were con-
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firmed in similar assays with human cells [51, 55, 56] as
well as in experiments on different mouse strains [50, 52,
54, 57, 58].

These in vitro experiments suggest that an excess of
persisting apoptotic cells may lead to the induction of
SLE-specific antibodies against dsDNA. Experiments
with thymectomized [59], T-cell-receptor-depleted [60] or
anti-CD4-antibody-treated mice [61] confirmed the con-
tribution of T cells in the etiopathogenesis of murine SLE.
In humans the efficiency of the T-cell-specific immuno-
suppresive cyclosporin A suggests a T cell involvement in
the etiopathogenesis of SLE.

Anti-dsDNA- and Immune-Complex-

Mediated Organ Damages

Tissue Damage by Anti-dsDNA Antibodies

Just as the origin of anti-dsDNA antibodies, the mech-
anisms by which these antibodies could cause tissue dam-
age remain unclear. Suzuki et al. [53] suggested that cat-
ionic anti-dsDNA antibodies binding to heparan-sulfate,
a major glucosaminoglycan in the glomerular basement
membrane, locally form immune complexes with the sub-
sequent development of lupus nephritis [53]. Although,
several other communications have postulated that anti-
heparan-sulfate antibodies might be directly involved in
the development of renal disease in SLE [62, 63], clear
evidence is still missing. Morioka et al. [64] recently pro-
vided evidence that antibodies from sera of SLE patients
can form soluble histone-DNA- anti-DNA immune com-
plexes that bind to rat glomerular capillary wall in vivo,
indicating yet another mechanism by which kidney injury
might occur. Raz et al. [65] postulated a more direct role
of anti-dsDNA antibodies in disease pathology. Their
work complementing earlier studies that had shown that
murine monoclonal anti-DNA antibodies bind to renal
tissue demonstrated that murine anti-DNA monoclonal
antibodies, but not monoclonal anti-RNA or anti-histone
antibodies bind weakly to normal epithelium and strongly
to various human tumor cell lines, indicating the possibil-
ity of a direct pathogenic effect on cell surfaces.

Generating 4 human anti-dsDNA hybridomas from 1
SLE patient, we were able to demonstrate that 3 out of 4
anti-dsDNA monoclonal antibodies had high affinity for
dsDNA. The antibody with low affinity cross-reacted with
cardiolipin. Biological studies of the monoclonals re-
vealed different interesting characteristics. Thus, the
monoclonal antibody 33.C9 was demonstrated in a SCID
mouse model to produce proteinuria by depositing in the

glomeruli, the mesangium, and capillary wall of kidneys
[66]. Furthermore, antibody 33.H11 cross-reacted with
the ribosomal protein S1 and suppressed in vitro protein
synthesis. In addition, 33.H11 inhibited in vitro transla-
tion of globulin mRNA, which was enhanced when the
reticulocyte lysate was treated with DNAse. From these
data it might be speculated that suppression of protein
synthesis could be regarded as a pathogenic mechanism of
anti-dsDNA antibodies, since it had previously been
shown that some anti-dsDNA antibodies were able to
penetrate living cells in culture [67, 68]. The different bio-
logical activities of monoclonal anti-dsDNA antibodies
obtained from one patient give rise to the hypothesis that
at least one possible mechanism leading to a specific
organ targeting by anti-dsDNA antibodies in SLE could
be due to a cross-reactivity of anti-dsDNA antibody
clones with organ-specific antigens. Further studies are
presently in progress to substantiate this hypothesis.
Forthcoming research will doubtless reveal new and im-
portant mechanisms with regard to pathogenic tissue-
destructive activities of anti-dsDNA antibodies which
might additionally serve as a basis for the development of
new therapeutic principles.

Organ Damage Mediated by Immune

Complexes

Deposition of glomerular immune complexes could be
observed in mice injected with anti-dsDNA antibodies.
Deposition or in situ formation of immune complexes led
to structural and functional kidney alterations [69]. Struc-
tural differences, such as charge, isotype or kryoprecipita-
tion, influence the pathogenicity of ds-DNA antibodies.
Glomerular binding is caused by a charge-dependent
interaction of DNA, histones or nucleosomes with ele-
ments of the glomerular basement membrane such as
laminin or heparan sulfate [70, 71]. An alternative path-
way is the formation of nucleosome containing immune
complexes and their deposition at anionic parts of the
basement membrane [72–76]. Immune complex deposi-
tion may then activate the complement system with con-
secutive complement consumption. This illustrates why
decreased concentrations of C3 and C4 are established as
activation parameters of SLE. Activation of the comple-
ment system leads to stimulation of the cellular immune
system with granulocyte and lymphocyte infiltration [71].
The excretion of lysosomal enzymes and oxygen radicals
may finally cause tissue damage resulting in proteinuria
and kidney failure. Similar pathogenetic mechanisms
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may also work in SLE vasculitis and other organ damage.
Another important pathogenetic factor in the pathological
cascade might be the defective clearance of immune com-
plexes by an unfavorable expression of Fc receptors capa-
ble of binding the Fc part of IgG. An important conse-
quence could be that immune complexes are not ade-
quately cleared. We have been able to show that SLE
patients with a certain FcÁ type II receptor genotype show
proteinuria, hemolytic anemia, hypocomplementemia
and snRNP antibodies at a significantly higher level [77].
In addition, dysfunction of nucleosome receptors [78, 79],
Fc receptors [80], C3b receptors [81, 82], or defective
resolution of DNA-nucleosome complexes have been dis-
cussed as pathogenetic factors [83–86].

Antibodies against phospholipids (e.g. cardiolipin or
phosphatidylserine) are often associated with systemic
autoimmunopathies, such as SLE. Phosphatidylserine is
deposited on dying cells as an early sign of apoptotic cell
death and serves as a phagocyte recognition molecule for
apoptotic cells. This again shows the close relationship
between autoantibodies and apoptosis. Although there are
many questions to be asked and answered, some of the
arguments mentioned in this review support the hypothe-
sis of a contribution of a ‘dysregulation’ of apoptosis in
the etiopathogenesis of SLE. The answers to the open
questions will help establish a specific therapy for the
SLE.
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Abstract

Antibodies to specific autoantigens are serological hall-

marks of systemic autoimmune diseases. These autoan-

tibodies are thought to represent a consequence of

immune dysregulation in these conditions, and, in part,

have been shown to be involved in their pathologic con-

sequences. However, the mechanisms that lead to the

production of autoantibodies are still unknown. The ob-

servation that certain autoantibodies are frequently en-

coded by a limited number of immunoglobulin (Ig) vari-

able-region gene segments suggested that a bias in the

development of the Ig repertoire might play a role

in the tendency to develop autoimmunity. Whether the

use of these individual gene segments is random or dif-

ferent in normal subjects and patients with systemic

autoimmune disorders remains a matter of controversy.

New approaches for the analysis of variable-region

genes from unstimulated individual human B cells em-

ploying the single-cell polymerase chain reaction have

provided new insights in the B cell repertoire of both nor-

mal subjects and patients with systemic autoimmune

diseases. Using this approach, the analysis of nonpro-

ductive and productive Ig variable-region gene rearran-

gements made it possible to distinguish molecular pro-

cesses, as manifested in the nonproductive repertoire,

from subsequent selection influences. An initial study in

a patient with systemic lupus erythematosus has led to

the hypothesis that the molecular generation of the B cell

repertoire is similar in patients and normal subjects but

subsequent influences and, most notably, extensive mu-

tations and receptor editing differ significantly in shap-

ing the peripheral IgV gene use by persons with autoim-

mune diseases.
Copyright © 2000 S. Karger AG, Basel

Introduction

The specificity of an antibody for an antigen is deter-
mined by three complementarity determining regions
(CDRs) in the variable (V) region of both heavy (H) and
light (L) chains. Each B lymphocyte displays a unique set
of CDRs that is interposed in the tertiary structure of the
protein to form the classical antigenic binding site [1]. At
the molecular level, a high degree of diversity of the
immunoglobulin (Ig) variable region (IgV) is generated
during early B cell development by the somatic recombi-
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nation process [2] that assembles functional genes by suc-
cessive rearrangements of one of a number of joining (J),
diversity (D) and variable (V) minigene elements of the
heavy chain, followed by V-J rearrangement of the light
chain. During this recombination, further diversity can be
introduced by exonuclease activity as well as the addition
of nontemplated N-terminal (N) nucleotides at the joining
sites. Moreover, the association of heavy and light chain
genes is random [3, 4]. Somatic hypermutation and, occa-
sionally, secondary rearrangement of upstream localized
V gene segments (receptor replacement or editing) may
further diversify the IgV gene repertoire following antigen
exposure [3]. These various mechanisms are able to gener-
ate a highly diversified array of IgV gene products.

However, studies in the mouse have indicated that the
B cell repertoire is limited and developmentally regulated.
Thus, certain VH, D and JH segments are preferentially
used during neonatal development [5, 6]. Moreover, di-
versification mechanisms, such as N-terminal addition
and somatic hypermutation, do not appear to play an
important role during early development of the murine B
cells [7]. Similar restrictions in the use of individual IgV
gene elements have also been shown for human fetal and
neonatal B cells [8–14]. In contrast to observations in the
mouse [5–7], however, the chromosomal order of human
VH gene segments does not appear to play an important
role for the frequency of VH use in VHDJH rearrangements
[10, 11]. Of note and similar to the developing murine
repertoire, a limited number of individual human IgV
gene segments has been found to be frequently used in
naturally occurring (auto)antibodies in both fetuses and
adults [12–22] as well as in putatively pathogenic autoan-
tibodies [20–27]. These observations have led to the con-
cept of ‘autoantibody-associated IgV genes’ [for reviews,
see ref. 27, 28]. Moreover, this ‘autoantibody-associated’
IgV repertoire has been thought to recapitulate that ex-
pressed by CD5+ B cell lines [12] and in certain B cell
malignancies [27].

More recent studies [28–36] have revealed that the
entire peripheral B cell repertoire in normal human adults
is limited in its IgV gene representation as well. Of note,
combining molecular and serological/anti-idiotypic find-
ings, a strong overlap has been noted between this biased
IgV gene repertoire in normal adults and that used in fetal
Igs, autoantibodies and B cell malignancies [8–43]. For
example, it could be clearly demonstrated that VH gene
use by patients with chronic lymphoid leukemia is very
similar as that found in normal subjects [38]. Maturation-
ally regulated and molecular mechanisms (e.g., enhancer-
like sequences, D proximity, insertion polymorphism,

gene duplication) may account for some of the limited use
of VH genes by B cell repertoires in both normal and
abnormal conditions. However, the regulation of these
limitations has not been completely elucidated. Thus,
studies are under way to determine whether genetic poly-
morphisms, abnormalities in ontogeny, the molecular
mechanisms underlying somatic recombination and hy-
permutation processes (within and outside the IgV gene
loci), clonal selection or defects in selection processes as
well as receptor editing can contribute to the tendency to
produce autoantibodies in autoimmune diseases.

IgV Gene Use by Normal Individuals and

Naturally Occurring (Auto)antibodies

In order to evaluate the B cell repertoire in pathologic
conditions, a comprehensive data base of the IgV gene use
by B cells of normal individuals is necessary. Until recent-
ly, most information available on the human B cell reper-
toire derived from Epstein-Barr virus transformed cell
lines, hybridomas, anti-idiotype analyses, and molecular
biological techniques, such as in situ hybridization and,
especially, the analysis of cDNA libraries. These data
include the Ig genes encoding naturally occurring poly-
reactive (auto)antibodies that make up a considerable
fraction of the total repertoire in healthy humans, and are
thought to be involved in diverse physiological functions
at different stages of development of the immune system
[44–46]. Reactivity to more than two structurally unre-
lated antigens, low-affinity binding, high idiotypic con-
nectivity and a biased use of germline genes with little or
no somatic mutations are main features of these, mostly
IgM antibodies [44–46] which must be distinguished
from pathogenic autoantibodies [47].

The expression of a rather restricted set of individual
IgV gene segments during the intrauterine and neonatal
phases of development is well established [8–14, 37]. Of
note, most if not all of these developmentally expressed
IgV genes have been found to encode naturally occurring
(auto)antibodies in human fetuses and adults with little or
no somatic mutations [12–22]. This finding suggests that
the natural (auto)antibody repertoire could simply reflect
the expression of a subset of developmentally related, con-
served IgV genes. However, Ig chain shuffling studies in
transfectomas have indicated that (auto)polyreactivity is
often dependent on the somatically generated CDR3.
Therefore, these autoantibodies are candidates for selec-
tion into the repertoire [41].
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Since a substantial part of the fetal B cell repertoire
expresses Ig molecules capable of binding to a variety of
structurally unrelated antigens, including self-determi-
nants, the hypothesis has been suggested that repertoire
selection in the physiologically germfree intrauterine en-
vironment may be initiated by binding of surface Ig mole-
cules to developmentally related antigens (e.g., self-deter-
minants, Ig idiotypes) [48]. Therefore, the fetal repertoire
may be limited by cellular selection rather than by molec-
ular processes, e. g., restricted or biased V(D)J recombina-
tion [10, 11]. The function of the (auto)polyreactive reper-
toire in fetal life is not clear, but it may act to opsonize and
dispose of apoptotic material and other cellular debris
produced to the rapid organ remodeling of the fetus. One
result of this process, however, is that a ‘primitive’ broad-
ly specific (polyreactive) repertoire is generated, which
then may assume different functions in postnatal life [44–
46].

It should be noted that a significant portion of the poly-
reactive (auto)antibodies from the germfree fetal environ-
ment have been found to react with bacterial components
[13], as has been reported for the adult polyreactive B
cell repertoire [44]. These cross-reactivities generated in
utero, encoded by conserved and developmentally regu-
lated (most likely autoantigen/idiotype-selected) IgV
genes [13, 14], may act as a ‘first-line defense’ of the neo-
nate against bacterial infections when placentally trans-
ferred maternal IgG is exhausted [13].

During maturation and exposure to exogenous anti-
gens, the poly/self-reacting B cell pool may diminish in
size, whereas the non-self-reacting cell pool expands, and,
by somatic hypermutation and other diversification
mechanisms, produces classical high-affinity antibodies
[48, 49]. In contrast to the B cell depletion/anergy induced
by B cell receptor binding to conventional autoantigens
[50], it seems possible that B cells expressing surface-
bound naturally occurring (auto)antibodies may be stimu-
lated by diverse, polyvalent, T-cell-independent (auto)an-
tigens to proliferate in a manner that may render these
cells more susceptible to abnormal clonal expansion and
malignant transformation. This contention is supported
by the finding that there is a close relationship of the Ig
repertoire expressed by certain B cell malignancies, par-
ticularly IgM bearing chronic lymphocytic leukemia B
cells, to the natural antibody repertoire [42, 43]. Similari-
ties, strongly indicative for this linkage, include a biased
IgV gene use, expression of common Ig idiotypes, a simi-
lar pattern of binding specificities [27, 37–43, 51] as well
as a rather low affinity for the recognized antigens [40].
Moreover, autoreactive B cell precursors in the human

bone marrow were frequently found to be in a prolifera-
tive state [52], presumably reflecting the nonspecific na-
ture of their activation signals. Whether pathogenic high-
affinity autoantibodies could arise by somatic hypermuta-
tion from the polyreactive cell pool [24, 25], e.g., following
a breakdown of T cell tolerance, or whether polyreactive B
cells may be involved in normal and/or abnormal antigen
processing is still unclear.

In adults, in situ hybridization experiments and stud-
ies in EBV-transformed B cell lines revealed inconsistent
results with regard to whether the VH gene family use
approximated the complexity of individual families [30,
53–55]. However, when assessing individual IgV gene use
of peripheral B cells in normal humans by analyzing
cDNA libraries [28–31], there was strong evidence that
some individual genes were overexpressed in the adult
repertoire. Moreover, these studies have indicated that
the pattern of IgV gene use may vary between individuals
and with time, putatively because of environmental in-
fluences [28]. Interestingly, Huang and Stollar [29] dem-
onstrated that a majority of IgH chain cDNA of normal
human adult blood lymphocytes resembled cDNA for
fetal Ig and naturally occurring (auto)antibodies. Accord-
ingly, examples of VH gene segments found to be overex-
pressed in adult normals included the VH3 family mem-
ber 3-23/DP-47/VH26/30p1 [31], the VH4 family member
4-34/DP-63/VH4.21 [21, 28], and the VH1 family member
1-69/DP-10/51p1 [28], all three belonging to the re-
stricted fetal IgV gene repertoire and expressed frequently
in B cell malignancies [27, 37–43]. More recently, using a
single-cell polymerase chain reaction (PCR) methodology
to assess the Ig repertoire, potential problems of biased
sampling have been avoided. By this means, it is possible
to analyze B cell subpopulations by using specific anti-
bodies for cell sorting. Because of the small numbers of
cells needed for this analysis, different subsets from the
same donor can be evaluated and, moreover, analysis of
the H/L chain pairing of single cells can be determined
[4]. In addition, analysis of genomic DNA amplifies both
the functionally and nonfunctionally rearranged Ig genes
and, thereby, can provide definitive information about
the possible basis of any biases detected (fig. 1). Based on
these critical assumptions, molecular events and/or se-
lective influences that might influence the expressed
repertoire can be differentiated.

Studies of the VH gene use in normal individuals [32,
33] analyzed the distribution of VH gene families, and
found that the frequency of occurrence is a function of
germline complexity, although a bias towards VH3 and
some of its members was found. At the level of individual
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Fig. 1. Differentiation of molecular pro-
cesses, such as recombination and somatic
hypermutation, represented by nonproduc-
tive rearrangements and superimposed se-
lective influences that shape the productive
V gene repertoire.

genes, preferential use of some gene segments, as suggest-
ed by analyses of cDNA libraries [28–31], has been verif-
ied. In detail, ten VH genes (3-23, 4-59, 4-39, 3-07, 3-30,
1-18, 3-30.3, DP-58, 4-34, and 3-09) were shown to be
used by approximately 60% of normal peripheral blood B
cells. One particular VH3 family member, 3-23/DP-47/
VH26 was used by about 15% of unselected B cells
[31–33]. This bias was noted in the productive but not in
the nonproductive repertoire, indicating that it resulted
from selection. Previous studies [56] had suggested that
overrepresentation of VH3-23 occurred at the pre-B cell
stage of development. Selection of VH3-23 was indepen-
dent of the DH or JH segment employed, the length or cha-
rateristics of the CDR3 and the pairing of VÎ chains, con-
sistent with the possibility that this selection may have
occurred as a result of a B cell superantigen-like influence
[57, 58]. In contrast to VH3-23, VH4-59 was overexpressed
in the nonproductive repertoire and its frequency was not
altered in the productive and nonproductive repertoires,
consistent with the conclusion that molecular biases in the
VDJ recombination process accounted for its overrepre-
sentation. Evidence for a negative selection of certain VH3
and VH4 family members was noted in that they were
found less often in the productive than the nonproductive
VDJ repertoire. In addition, evidence for a positive selec-
tion based on CDR3 of the VH rearrangements was
obtained, in that JH6 and DXP)1 were found at a higher
frequency in the productively compared to the nonpro-
ductively rearranged repertoire. A much higher frequency

of mutations was noted in the nonproductively rear-
ranged VH genes from individual B cells [33, 59]. Al-
though VH utilization by CD5+ and CD5– B cells was
comparable, a statistically significant difference in the fre-
quency of somatic mutation between these subpopula-
tions was noted [33, 36]. These results from healthy indi-
viduals demonstrating the influences of molecular and
selective events in shaping the peripheral B cell repertoire
provided the basis for a comparison with the IgV gene
repertoire in different autoantibody-associated autoim-
mune diseases.

IgV Gene Use in Systemic

Lupus Erythematosus

Initial studies have demonstrated that the single-cell
PCR technique is a powerful tool to gain insight into the
differential impact of molecular and selective influences
in autoimmune diseases, most notably in SLE [60]. SLE is
an autoimmune disease serologically characterized by the
production of multiple autoantibodies, especially those to
double-stranded DNA (dsDNA) [61]. It is likely that anti-
dsDNA antibodies are pathogenic in that they are able to
induce renal damage, as documented by perfusion experi-
ments in rodents [62, 63] and by the presence of such anti-
bodies in human lupus kidneys [64]. Of note, however,
anti-single-stranded DNA (ssDNA), a common specificity
of naturally occurring (auto)antibodies, has also been
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shown to induce severe diffuse proliferative nephritis in
mice [65].

In contrast to the naturally occurring (auto)antibodies
found in healthy humans and normal nonimmunized ani-
mals, pathogenic antibodies are not polyreactive in that
they do not react with a wide spectrum of unrelated anti-
gens, are often cationic, are usually IgG, and, when
sequenced, are often highly mutated, suggesting that they
result from a T-cell-dependent immune response [24, 25,
47, 66–71]. Remarkably, the notion that pathogenic anti-
DNA antibodies are characteristically of high affinity has
been challenged, since it appears that the charge and affin-
ity for dsDNA are not predictors of the pathogenic capaci-
ty of anti-DNA antibodies [72]. Thus, the fine specificity
of autoantibodies rather than avidity alone appears to
determine whether they are pathogenic or nonpathogenic
[72]. In addition, the potential of autoantibodies to enter
living cells may contribute to their pathogenic conse-
quence [73].

There is some evidence that potentially pathogenic
autoantibodies may arise by somatic hypermutation dur-
ing the immune response to foreign antigens from anti-
bodies that have no reactivity to autoantigens in their
germline configuration [72, 74]. Consistent with this,
high-titer expression of anti-dsDNA antibody-associated
idiotypes can be found within SLE kindreds in clinically
unaffected family members who express no anti-dsDNA
antibodies [75].

Despite intensive study, the factors that lead to the
production of pathogenic autoantibodies in SLE remain
largely unknown. The possibility that there are diffuse
abnormalities in the Ig repertoire of patients with SLE has
not been completely examined. It is not known whether
interindividual genetic polymorphisms of the IgV gene
loci, abnormalities in the V(D)J recombination process or
in the somatic hypermutation and/or subsequent selective
influences underlie the generation of autoantibodies.
There is a suggestion that a distinct VH gene haplotype
may predispose to both rheumatoid arthritis and SLE in
humans and may be involved in the generation of an aber-
rant idiotypic network [76]. Other studies have demon-
strated that the major part of human anti-dsDNA is
encoded by VH3 family members, although there is no
restriction to a certain VH family or an individual IgV
gene segment [25, 70], in contrast to the absolute VH gene
restriction found in cold agglutinins [23]. Of note, anti-
dsDNA-antibody-associated idiotypes encoded by dis-
tinct IgV gene segments have been described, although
idiotype-related gene use is not absolutely restricted to
anti-dsDNA autoantibodies [75, 77–81]. In addition, cer-

tain features of the CDR3, such as use of an uncommon
reading frame of the D segment, D-D fusions or the fre-
quent presence of arginine, an amino acid implicated in
DNA binding, have been found in anti-dsDNA anti-
bodies [24, 25, 67, 68]. Furthermore, it has been suggested
that an abnormality in the ‘mutator’ mechanism may pre-
dispose to increased somatic mutations, since most patho-
genic anti-DNA antibodies are heavily mutated [82]. This
remains controversial, however, since it has also been
reported that there are no significant differences in the
mutational activity directed towards murine antibodies to
exogeneous antigens and autoantibodies [83]. Although
the precise mechanism remains unclear, the aggregate test
results suggest that diffuse abnormalities in one or more
of the processes governing the generation of the B cell
repertoire could contribute to the tendency to produce
pathogenic autoantibodies in SLE.

In a more recent study of the IgV gene repertoire in
peripheral B cells of an untreated SLE patient employing
a single-cell PCR technique [60, Dörner et al. submitted],
the VLJL recombination process was found to be compara-
ble to normal individuals, as judged by analysis of the dis-
tribution of nonproductive VLJL rearrangements. How-
ever, striking differences in the productive VL gene reper-
toire of this patient were noted, with increased use of the
JL distal VL genes and a marked increase in the use of JÎ5
and JÏ7, the most VL distal JL genes. It is noteworthy that
these differences from normal were found despite the fact
that the entire B cell population was sampled, consistent
with the conclusion that there was a global B cell abnor-
mality in this SLE patient, rather than a defect limited to a
subset of B cells or Ig genes. These data suggested that the
replacement of primary VLJL rearrangements by subse-
quent rearrangements (receptor replacement or editing)
was more frequent in this SLE patient than had been
observed in normal individuals [34, 35]. Despite this, the
mechanisms of receptor editing of VÎ and VÏ genes
appeared to be different. The data from this patient sug-
gested that VÎ receptor editing in SLE occurs in the
periphery after somatic hypermutation has been initiated,
based on the higher mutational frequency of productive
rearrangements using JÎ1-4 compared to those using JÎ5
[60]. In contrast, analysis of the mutational pattern of VÏ

rearrangements suggested that the dominant influence
was central before the mutational machinery had been
activated, and therefore, most likely in the bone marrow
during B cell ontogeny. Thus, there was an increased use
of 5) VÏ genes and the 3) JÏ7 segment, but there was no
decrease in the mutational frequency of productive VÏ

rearrangements using these elements nor of the entire pro-
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Fig. 2. Comparison of VH gene use in the nonproductive (A) and productive (B) repertoire of an SLE patient and
normal subjects showed a significantly different usage of VH3 (p ! 0.001) and VH4 (p ! 0.03) in the productively
rearranged genes.

ductive VÏ repertoire. Data from transgenic mice have
shown that central receptor editing can operate to replace
light chains of B cells expressing autoantibodies [84],
although there are no previous examples of central recep-
tor editing of VÏ chains. The results of the repertoire anal-
ysis of the SLE patient suggest that emergence of VÏ-con-
taining autoantibodies during B cell ontogeny may have
been the stimulus for central VÏ receptor editing in this
SLE patient. In this context, VÏ genes have been shown to
be critical parts of a number of human autoantibodies,
including those to dsDNA [69, 70, 77].

It is noteworthy that certain genes (VÏ4B/JÏ2/3) were
found exclusively in the nonproductive repertoires of
both normal individuals and the SLE patient, suggesting
that they were similarly eliminated from the productive
gene repertoire of each. This implies that some elements
of negative selection or receptor editing operated normal-
ly in the SLE patient. Similarly, A30/JÎ2 was exclusively
found in the nonproductive repertoire of this SLE patient
[60]. Productively rearranged A30/JÎ2 genes have been
shown to bind dsDNA in their germline configuration
[66, 71]. Although the binding specificity of 4B/JÏ2/3
gene rearrangements has not been delineated, it was
detected only in the nonproductive repertoire, suggesting
the possibility that it might bind an autoantigen. Its elimi-
nation from the productive repertoire of normal individu-
als and the SLE patient might, therefore, result from nega-
tive selection and/or receptor editing. Whatever the
mechanism of elimination, this process appeared to be

intact in this SLE patient and comparable to normal indi-
viduals.

In contrast to analysis of VL gene use by this patient,
examination of VH gene use revealed no evidence of
increased receptor editing, but other differences in the VH

gene repertoire that could contribute to autoantibody for-
mation. Thus, the comparison of the productive VH reper-
toires between the SLE patient and the normal individu-
als revealed a striking overrepresentation of VH3 family
members and underrepresentation of the VH4 family
(fig. 2). The possibility that the patient manifested a gen-
eralized enhancement in positive selection of VH3-ex-
pressing B cells was suggested by the analysis of the entire
VH3 family, as well as of the VH3-23 (DP-47) gene – the
most frequently used VH3 family member in healthy
adults [31–33, 56, 85]. In this SLE patient, VH3-23 was
even more frequently used than in normal individuals. Of
importance, VH3-23 has previously been noted to encode
anti-DNA antibodies, especially the 16/6 idiotype [81].
Whether an abnormal mechanism, such as B cell superan-
tigen stimulation [57, 58], causes expansion of VH3 ex-
pressing B cells in SLE will require careful analysis of oth-
er patients. Further comparison on the level of individual
VH gene use by the productive repertoire revealed that the
VH3-11 gene segment was also found significantly more
often in this SLE patient than in normal subjects. Of note,
negative selection of VH3-11 in normal subjects has pre-
viously been suggested in other studies [56, 85] regardless
of the donor’s genetic background. This mandates analy-
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sis of other SLE patients to determine whether the VH3-11
segment is overrepresented in the expressed repertoire.

One of the remarkable findings of this analysis was the
identification of a clone of B cells that expressed VH3-11/
VÏ1G. Previous analysis demonstrated no comparably
expanded B cell clones in normal peripheral blood B cells
[33–36]. The use of VH3-11 and VÏ1G gene segments by
this clone requires emphasis, since both genes have been
reported to be negatively selected in normal subjects [32,
86]. Although proof of autoreactivity of these resulting
receptors is lacking, these data are consistent with the con-
clusion that clonal expansion of B cells can occur in the
initial stages of SLE, suggesting an overwhelming antigen-
ic stimulus. Studies in mice have also documented that
clonal expansion of autoreactive B cells occurs in early
lupus [87, 88]. Thus, the expansion of a B cell clone in the
initial stages of SLE is consistent with findings noted in
autoimmune-prone mice [88, 89].

Analysis of mutations provided further insights into
the generation of diversity in this SLE patient. Markedly
increased somatic hypermutation of the VH rearrange-
ments of this untreated SLE patient was apparent. Thus,
mutational frequencies of nonproductive and productive
rearrangements in CD19+ B cells from the SLE patient
were significantly greater than those found in normal sub-
jects [36, 90]. Since mutational activity in general is
induced in response to T-dependent antigens [49] and the
frequency of mutations in the nonproductive repertoire
reflects the activity of the mutational machinery without
subsequent selection [90], the B cells of this patient
appear to have been stimulated in a T-cell-dependent
manner more intensively or more persistently than in nor-
mal subjects. Whether this reflects the intensity or persis-
tence of stimulation or a defect in apoptosis of B cells
expressing mutated receptors, as has been suggested [50,
74], remains to be determined.

The difference in the frequency of mutations in the
productive and nonproductive repertoires reflects the in-
fluence of selection, with elimination of mutation-gener-
ated defective B cell receptors normally more evident
than positive selection of those with increased avidity [33,
36, 90, Foster et al., submitted]. This process seems to be
generally intact in this SLE patient, even though the over-
all resulting frequency of mutations in the productive
repertoire is much greater than normal.

Taken together, (1) receptor editing of VL gene rearran-
gements, (2) skewing of the VH gene repertoire towards
utilization of VH3 genes, (3) clonal expansion of B cells,
and (4) a generalized increase in somatic hypermutation
may all contribute to the emergence of autoimmunity in

this SLE patient. Whether these findings reflect a reactive
pattern based upon extensive stimulation or represent
intrinsic abnormalities in the entire B cell population pre-
disposing to the emergence of autoimmunity remains to
be elucidated. The data are most consistent, however,
with the conclusion that extreme T-cell-dependent B cell
overactivity is found in the initial stages of SLE leading to
remarkable changes in peripheral IgV gene use and de-
spite extensive light-chain receptor editing permits to the
emergence of autoimmunity.

Conclusion

In conclusion, the single-B-cell PCR methodology
makes it possible to analyze IgV gene use by unstimulated
individual B cells without bias. The use of this technique
has permitted an analysis of the distribution of light and
heavy chain use, assessment of differences between non-
productive and productive rearrangements that imply
influences of molecular versus selective mechanisms in
shaping the repertoire and also an examination of the
impact of somatic mutations. Finally, experiments are
currently in progress to determine the IgV gene use in oth-
er systemic autoimmune diseases. It remains to be eluci-
dated whether the IgV gene use and the mutational pat-
tern of the same donor at different time points of the dis-
ease, in different immune compartments as well as in par-
ticular B cell subsets will provide new clues in understand-
ing B cell autoimmunity. Altogether these studies should
provide a unique opportunity to test the hypothesis that
abnormalities in the generation of the Ig repertoire, the
process of somatic hypermutation and/or selective in-
fluences play a role in autoimmune disease.
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Abstract

Autoantibodies to cellular autoantigens are usually

found in sera of patients with systemic autoimmune

rheumatic diseases. Patients with Sjögren’s syndrome

(SS) frequently present autoantibodies to both organ

and non-organ-specific autoantigens. The most com-

monly detected autoantibodies are those directed

against the ribonucleoproteins Ro/SSA and La/SSB. The

presence of the antibodies in SS is associated with early

disease onset, longer disease duration, parotid gland

enlargement, higher frequency of extraglandular mani-

festations and more intense lymphocytic infiltration of

the minor salivary glands. Over the past several years,

the structure and function of these autoantigens have

been extensively studied. Several centers, using differ-

ent techniques, have investigated the B cell epitopes on

the protein components Ro 60 kD, Ro 52kD, and La 48 kD.

Finally, increased evidence of direct involvement of anti-

Ro/SSA and anti-La/SSB autoantibodies in the pathogen-

esis of tissue injury has been contributed by several

studies.
Copyright © 2000 S. Karger AG, Basel

Introduction

Sjögren’s syndrome (SS) is a chronic autoimmune dis-
ease, which affects primarily salivary and lacrimal glands
leading to dry eyes (keratoconjunctivitis sicca) and dry
mouth (xerostomia). The prominent histopathological le-
sion in this disorder consists of a round cell infiltrate,
which initially surrounds the ducts, extending later to the
acinar epithelium leading to diminished glandular secre-
tion through apoptosis of these cells [1, 2]. Other organs,
which may be involved, include the bronchial tree, kid-
neys, liver, blood vessels, peripheral nerves and the pan-
creas. Of particular interest is the dual presentation of SS:
either alone as primary disorder in women of the fourth
and fifth decades (primary SS) or in the context of other
autoimmune diseases (secondary SS); glandular (sicca
symptoms) and systemic (extraglandular) clinical mani-
festations may be present. Therefore, this syndrome could
represent a classical model of autoimmune disease where
both features of organ-specific and systemic diseases are
expressed. Serological evidence of the autoimmune re-
sponse in SS provides the concomitant presence of circu-
lating organ- and non-organ-specific autoantibodies in the
serum of these patients. In the current review several
aspects of the non-organ-specific autoantibodies found in
SS are discussed and data suggestive of their potential
involvement in disease pathogenesis are provided.
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A View of Autoantibodies in SS

In the late fifties, in almost simultaneously appearing
reports, the presence of rheumatoid factors, antinuclear
and precipitating autoantibodies in sera of patients with
SS was claimed [reviewed in 3]. Rheumatoid factors are
directed against the Fc region of IgG showing significant
affinity only with aggregated IgG molecules. Antibodies
that bind the cell nucleus (antinuclear antibodies) are
present in approximately 90% of patients with SS as
revealed by immunofluorescence techniques. However,
no specific fluorescent pattern seems to characterize the
syndrome, since homogeneous or speckled patterns can be
seen. The exact antigens, which account for the positive
fluorescent pattern noted, are not clearly identified;
among the various autoantigens-targets, the cytoplasmic/
nuclear ribonucleoprotein particles (Ro/SSA and La/SSB)
appear to have a prominent role in the autoimmune
response of SS providing predominantly a finely speckled
nucleoplasmic pattern when the substrate used is Hep-2
cells.

The history of these antigens begins in 1958 when
Jones first reported a serum factor in patients with SS that
gave a precipitate with extracts of salivary and lacrimal
glands. Subsequent reports revealed two immunologically
distinct precipitating antibody systems from patients with
SS (SjT and SjD) and systemic lupus erythematosus (Ro
and La). From the similarity in physical and serological
properties, it was deduced that SjD corresponded to Ro
and the SjT to the La antigen. In 1975, Alspaugh and Tan
detected two ‘new’ antigenic specificities in sera of pa-
tients with SS termed SS-A and SS-B. By serum exchange,
thanks to an interlaboratory cooperation, the immunolog-
ical identity of Ro with SSA and La with SSB was demon-
strated and since then these antigen systems are referred
to as Ro/SSA and LA/SSB [reviewed in 4].

Other antigens involved in the positive nuclear pattern
by immunofluorescence include the following: Ku, NOR-
90 (nucleolar organizing region), p-80 coilin, HMG-17
(high-mobility group), Ki/SL. However, autoantibodies to
the above antigens are found in low frequencies and are
not disease specific [reviewed in 5]. Furthermore, organ-
specific autoantibodies are also recognized including anti-
thyroglobulin, antierythrocyte and antisalivary gland epi-
thelium antibodies [reviewed in 4]. Recently, a 120-kD
organ-specific autoantigen was purified from salivary
gland tissues of an NFS/sld mouse model of human SS.
The amino-terminal residues were identical to those of
the human cytoskeletal protein ·-fodrin. Sera from pa-
tients with SS reacted positively with purified antigen and

recombinant human ·-fodrin protein in contrast to con-
trols with rheumatoid arthritis and systemic lupus erythe-
matosus (SLE) [6]. Since the main antibodies found in
sera of patients with SS are directed against Ro/SSA and
La/SSB antigens and their presence is suggested as one of
the criteria for disease classification [7], the present report
will be focused mainly on clinical, functional and patho-
genetic aspects of these autoantibodies.

Structure of Autoantigens

The major target antigens Ro/SSA, La/SSB and their
cognate antibodies have been extensively defined at the
molecular level. In 1981, it was described that Ro/SSA is a
ribonucleoprotein containing small, cytoplasmic RNAs
[8]. In human cells, four small cytoplasmic RNAs called
hY1, hY3, hY4 and hY5 (h for human and Y for cYto-
plasmic), of a length ranging from 84 to 112 nucleotides,
have been recognized. These are uridine rich, present at
about 105 copies/cell and transcribed by RNA polymerase
III.

In 1984, the protein component of Ro/SSA antigen was
investigated: a 60-kD protein (60-kD Ro/SSA, Ro60) was
bound to one of several small cytoplasmic RNA mole-
cules. This protein is phylogenetically conserved since it
has been described in several other species including
mammalians and nematodes. Later on, it was proposed
that a 52-kD peptide is another component of Ro/SSA
antigen (52-kD Ro/SSA; Ro52) [reviewed in 9].

La/SSB antigen is composed of a polypeptide consist-
ing of 408 amino acids and a calculated molecular mass of
46.7 kD in conjunction with RNA polymerase III trans-
cripts. These include the precursors of cellular 5S RNA
and tRNA, human cytoplasmic RNA, U6RNA, viral
RNAs (adenovirusencoded VA-RNA, Epstein-Barr-en-
coded EBER). U1RNA transcribed by RNA polymerase
III and vesicular stomatitis leader RNA may also partici-
pate in the formation of the ribonucleoproteinic com-
plexes. A 3) uridine stretch common to all RNA-poly-
merase-III-transcribed RNAs constitutes the La/SSB-
binding region of the RNA. Both 60-kD Ro/SSA and La/
SSB proteins are members of a family of RNA-binding
proteins that contain a sequence of 80 amino acids known
as the RNA recognition motif (RNP). Based on the pro-
tein/RNA interactions a putative structure of the Ro RNP
particle has been proposed; the hY RNAs are bound to the
60-kD Ro/SSA via the lower stem of the RNA forming by
basepairing their 5) and 3) ends while La/SSB binds to the
3) oligonucleotide residues of hY RNAs in a transient
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Fig. 1. The linear sequence of La/SSB and
its four linear epitopes as they are defined by
peptide mimotope scanning.

Table 1. Molecular and functional characteristics of Ro/SSA and La/SSB antigens

Ro52

Ro52a Ro52b

Ro60

Ro60a Ro60b

La/SSB

chromosome 11 chromosome 1 chromosome 2
Number of amino acids 475 398 538 525 408
Calculated molecular weight, kD 54.1 45 60.6 59.3 46.7
Function DNA-binding protein quality control for 5S

rRNA production/involve-
ment in translation of
ribosomal protein mRNA

initiation, termination
factor for RNA poly-
merase III transcription/
viral replication

manner since this 3) sequence motif is mostly lost upon
maturation of the transcripts [reviewed in 10]. The molec-
ular characteristics of 60-kD Ro/SSA, 52-kD Ro/SSA and
La/SSB autoantigens appear in table 1 [11–14].

In order to elucidate the precise targets of the autoim-
mune response, research has focused on the identification
of antigenic determinants recognized by anti-Ro/SSA and
anti-La/SSB antibodies. B cell epitope mapping of 60-kD
Ro/SSA, 52-kD Ro/SSA and La/SSB molecules using sev-
eral strategies (overlapping synthetic peptides or recombi-
nant proteins tested in ELISA or in Western blotting)
have revealed specific epitopes in several studies. How-
ever, the results obtained in different reports are conflict-
ing due possibly to different assays used, to the presence
of conformational epitopes or to patients’ sera selection.
The identification of the fine specificity of these autoanti-
bodies has soon become an important issue because of its
relationship to possible mechanisms of autoantibody pro-
duction and the potential use of synthetic peptides as
diagnostic tools for the detection of the autoantibodies.

B cell epitopes of 60-kD Ro/SSA autoantigen appear to
be located in the central region and the carboxy-terminal
part of the molecule. Scofield et al. [15] reported that the
C-terminal 13-kD fragment of the 60-kD Ro/SSA protein
was recognized by 28 of 45 anti-Ro/SSA sera (62%). Later
on, Barakat et al. [16] using five selected synthetic pep-
tides revealed an oligopeptide (21–41) with considerable
reactivity with anti-Ro/SSA sera [16]. Wahren et al. [17]
using recombinant fusion protein of 60-kD Ro/SSA has
shown that all anti-Ro/SSA sera recognized an epitope in
the central region 181–396. Routsias et al. [18] using 22-
mer, synthetic peptides overlapping by 8 residues cover-
ing the entire sequence of the 60-kD Ro/SSA autoantigen,
revealed two disease-specific epitopes: the TKYKQR-
NGWSHKDLLRSHLKP (169–190) and the ELYKE-
KALSVETEKLLKYLEAV (211–232) region recognized
by sera from SLE and SS patients, respectively (fig. 1). In
a subsequent study it was shown that the epitope 169–190
possessed sequence similarity with the peptide RPDAEY-
WNSQKDLLEQKRGR, shared in the ß-chain of differ-
ent HLA-DR molecules [19].
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Fig. 2. The linear sequence of 60-kD Ro/
SSA and its linear epitopes as they are de-
fined by peptide mimotope scanning.

Boire et al. [20] have reported that a significant portion
of the humoral autoimmune response to the 60-kD Ro/
SSA antigen is directed against conformational antigenic
determinants. Recently it was revealed that multiple con-
formational epitopes can be bound simultaneously by
polyclonal anti-Ro/SSA sera from patients with SLE [21,
22].

In their study Scofield et al. [23] have shown that
immunization with short peptides from the sequence of
the SLE associated 60-kD Ro/SSA autoantigen results in
an autoimmune response to the entire 60-kD Ro/SSA
antigen while in about 20% of these animals, autoimmu-
nity also spreads to the La/SSB antigen.

The antigenic determinants of 52-kD Ro/SSA protein
are mainly linear and are found in the central part of the
molecule [24, 25]. Ricchiuti et al. [25] using 39 overlap-
ping synthetic peptides spanning the entire sequence of
52-kD Ro/SSA protein reported that four peptides (amino
acids 2–11, 107–126, 277–292 and 365–382) were recog-
nized by anti-Ro/SSA sera. Bozic et al. [26] have shown
that the region 1–292 was the smallest C-terminal dele-
tion fragment, which reacted with anti-Ro/SSA sera as the
full length 52-kD Ro/SSA. In a subsequent report, Frank
et al. [27] revealed an immunodominant epitope of 11
amino acids (197–207) on the NH2-terminal side of this
protein’s putative leucine zipper, while Kato et al. [28]
supported that the presence of antigenicity of the mole-
cule at the leucine zipper region could explain the prefer-
ence of anti-52-kD SSA antibodies to denatured forms of
the molecule.

The detection of antigenic determinants of La/SSB
autoantigen has also been considered in several studies.
Initially, Chan et al. [29] using controlled proteolytic deg-
radation with Staphylococcus aureus V8 protease of La/

SSB protein identified two antigenically distinct sets of
protease-resistant peptides termed X and Y. Sturgess et
al. [30] identified a major antigenic epitope within the
103 amino acids of the C-terminal portion of the protein,
while St. Clair et al. [31] using fusion proteins encoded by
La/SSB cDNA fragments defined three antigenic regions
comprising the sequences 1–107, 111–242 and 242–408.
More recently four highly reactive peptides with purified
IgG, spanning the regions 145–164, 289–308, 301–320
and 349–368 of the La/SSB protein, have been reported
(fig. 2). [32].

Recently, two conformational antigenic determinants
on hY5 RNA recognized by anti-Ro/SSA antibodies were
defined [33]. These epitopes were distinct from regions
bound by the 60-kD Ro/SSA and La/SSB proteins sug-
gesting a direct role of human Ro/SSA hY5 particles in the
induction of the immune response. T cell epitopes of both
autoantigens have not yet been defined in humans.

Cellular Localization – Function

The cellular localization of the Ro/SSA complex has
remained a controversial issue since the initial descrip-
tion of the molecule; in fact, Ro antigen was primarily
considered as a cytoplasmic antigen in contrast to SSA
that was identified as a nuclear autoantigen [4]. In immu-
nofluorescence studies with anti-Ro/SSA antibodies, the
52-kD Ro/SSA and 60-kD Ro/SSA protein have been
demonstrated to reside either only in the nucleus, in both
nucleus and cytoplasm or predominantly in the cytoplasm
[reviewed in 10]. Both proteins are transported to the
nucleus in an energy-dependent manner suggesting that
for import of both proteins a nuclear localization signal is
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required. After the association with Y RNAs, 60-kD Ro/
SSA and possibly also 52-kD Ro/SSA are likely to be
exported again to the cytoplasm [34].

The La/SSB protein is primarily located in the nucleus
[35]. However, it is reported that under stress conditions
it is transported in the cytoplasm [36]. Based on the above
observations La/SSB was proposed to shuttle between
nucleus and cytoplasm and to be involved in nucleocyto-
plasmic transport of RNA polymerase III transcripts [37].
Consistent with the latter finding is the involvement of
La/SBB protein in the initiation and termination of RNA-
polymerase-III-dependent transcription [38, 39]. More-
over recent data suggest that human autoantigen La/SSB
facilitates viral replication since it accelerates herpes sim-
plex virus type 1 replication in transfected mouse 3T3
cells [40].

Conversely, data regarding the role of Ro/SSA antigen
are still unclear. However, a recent study claimed that Ro/
SSA autoantigen may function as part of a novel quality
control or discard pathway for 5S rRNA production since
it was found to be associated with defective 5S rRNA pre-
cursors in Xenopus oocytes [41]. Furthermore, similarity
of the 60-kD Ro/SSA antigen with the p80 subunit of
telomerase was shown; telomerase is a ribonucleoprotein
complex involved in mechanisms of senescence of mam-
malian cells, adding hexameric repeats (telomeres) to the
growing ends of chromosomal DNA [42]. More recent
data suggest that the Xenopus laevis 60-kD Ro/SSA au-
toantigen may be implicated in the regulation of transla-
tion of ribosomal protein mRNAs [43] while 52-kD Ro/
SSA protein, a DNA-binding protein, seems to participate
in transcription regulation [44]. The functional role of the
above autoantigens is summarized in table 1.

Methods of Detection

Several methods have been developed for the detection
of anti-Ro/SSA and anti-La/SSB antibodies. Among them
double immunodiffusion and counterimmunoelectropho-
resis are mainly used in clinical diagnosis while Western
blot, immunoprecipitation and ELISA were mainly re-
served for research purposes. Western blot permits the
direct visualization of the Ro/SSA and La/SSB antigenic
polypeptides while RNA precipitation detects radiola-
beled small Y RNAs. Finally, the use of ELISA provides
information regarding quantitative levels, isotype and
complement-fixing ability of the antibody.

Meilof et al. [45] reported that the RNA precipitation
and counterimmunoelectrophoresis have shown high

specificity and sensitivity for anti-Ro/SSA detection,
whereas the Ro/SSA ELISA or HeLa immunoblot showed
lower sensitivities (96 and 80%, respectively).

In a comparative study of Manoussakis et al. [46], five
methods used for the detection of anti-Ro/SSA antibodies
are compared in 93 sera deriving from unselected patients
with autoimmune disease. In this study, it was shown that
the RNA precipitation assay showed the highest sensitivi-
ty and was selected as reference method. Counterimmu-
noelectrophoresis exhibited a specificity of 100% and a
sensitivity of 89%. ELISA showed a comparable specifici-
ty (95%) but lower sensitivity. Finally, Western blot used
for the detection of 52-kD and 60-kD antigenic specifici-
ties demonstrated a high specificity (95 and 97%, respec-
tively) but very low sensitivity (36 and 17%, respectively).
However, the preferred method for detection of anti-Ro/
SSA antibodies in clinical practice remains counterimmu-
noelectrophoresis because of ease of performance and
reliability. ELISA and immunoprecipitation methods are
more analytically sensitive methods, which detect even
small amounts of anti-Ro/SSA antibodies leading to a
decrease in diagnostic specificity. On the other side, stud-
ies for the detection of anti-La/SSB antibodies have
revealed that immunoblotting of recombinant La/SSB
protein or whole cell extract is the most sensitive and spe-
cific method for the detection of anti-La/SSB antibodies.
Counterimmunoelectrophoresis – conversely to what was
reported for anti-Ro/SSA antibodies – does not seem to be
a sensitive method for the detection of anti-La/SSB since
it yields false-negative results because of the presence of
nonprecipitating anti-La/SSB [47].

The identification of linear epitopes of Ro/SSA and
La/SSB antigens has led to the development of immu-
noassays based on the use of synthetic peptides. However,
the use of synthetic epitope analogues of 60-kD Ro/SSA
for the detection of anti-Ro/SSA seems to be of limited
diagnostic value. In their study, Routsias et al. [19] found
that the anti-60-kD-Ro/SSA reactivity of 60-kD Ro/SSA
epitopes is rather small (table 2). On the other side,
recombinant 52-kD Ro/SSA ELISA was proved to be a
sensitive method for the detection of anti-Ro/SSA in pri-
mary SS [48].

In contrast to anti-Ro/SSA, the synthetic peptide epi-
tope analogues of La/SSB exhibit high sensitivity and
specificity for the detection of anti-La/SSB antibodies in
ELISA and dot blot techniques. The prevalence of anti-
bodies against several La/SSB epitopes in Greek autoim-
mune sera is shown in table 2. In the same study it was
also demonstrated that the most sensitive and specific
peptide (amino acids 349–364) attached on a tetramer
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Table 2. Prevalence of antibodies against several epitopes of 60-kD
Ro/SSA and La/SSB in Greek patients with SLE and SS 

a Ro60

Amino acids

169–190 211–232

55 35
SS (n = 30) 33 53
Normals (n = 25) 0 0

b La/SSB

Amino acids

147–154 291–302 301–318 349–368

SLE (n = 24) 50 37.5 79 100
SS (n = 39) 18 20 69 82
Disease controls (n = 35) 0 0 2.9 11.4

Table 3. Prevalence (% positive) of anti-Ro/SSA and anti-La/SSB in
Greek patients with systemic autoimmune rheumatic diseases

Disease Anti-Ro/SSA Anti-La/SSB

63 40
SLE (n = 112) 52 10
Rheumatoid arthritis (n = 350) 10 1
Normals (n = 200) 0.5 0

sequential oligopeptide SOC4 has the same sensitivity for
the detection of anti-La/SSB antibodies as the recombi-
nant protein [49].

Clinical Associations

Anti-Ro/SSA is detected in a variety of connective tis-
sue disorders in various frequencies ranging from 30 to
50% in patients with SLE, 50 to 80% in SS, 95 to 100% in
neonatal lupus erythematosus, 60% in subacute cuta-
neous lupus erythematosus and from 3 to 14% in patients
with rheumatoid arthritis [50]. The frequencies for anti-
La/SSB antibodies in various disorders depend on the
method of detection used, since they are considerably
higher when they are measured by ELISA and immuno-

blotting [47]. In primary SS, anti-La/SSB antibodies are
found in 60% of patients [51]. In sera of patients with SLE
the prevalence of the above antibody ranges between 6
and 15%, while the correspondent figure in subacute cuta-
neous lupus erythematosus ranges from 25 to 35% [52,
53]. The prevalence of anti-Ro/SSA and anti-La/SSB in
Greek patients with systemic autoimmune diseases is
reported in table 3 [51].

In primary SS, anti-Ro/SSA is linked with early disease
onset, long disease duration, parotid or major gland
enlargement and intensive lymphocytic infiltration of the
minor salivary glands. Furthermore, it is considered a
marker of extraglandular involvement since it is associat-
ed with lymphadenopathy, splenomegaly and vasculitis
[54, 55].

Neonatal lupus erythematosus is invariably associated
with the occurrence of anti-Ro/SSA and/or anti-La/SSB
antibodies in maternal sera. This is a clinical syndrome,
affecting primarily the newborn of anti-Ro/SSA-positive
mothers regardless of their clinical status; it is character-
ized by the presence of cutaneous lesions resembling sub-
acute lupus erythematosus, congenital heart block, hepati-
tis hemolytic anemia and thrombocytopenia. This syn-
drome represents a classical model of passively acquired
autoimmunity since it is considered to result from trans-
placental passage of IgG anti-Ro/SSA and anti-La/SSB
antibodies starting around the twentieth week of gestation
causing histopathological lesions in the developing tis-
sues. Among the clinical manifestations of this syndrome
irreversible congenital heart block appears to be the more
serious feature, in contrast to the remainder of clinical
manifestations which resolve usually at about 6 months of
life with the disappearance of maternal antibodies from
the neonatal circulation [56]. In a recent study, it was
shown that anti-Ro/SSA antibody, although it does not
adversely effect pregnancy outcome in SLE patients, ap-
pears to be associated with recurrent pregnancy loss in
non-SLE patients suggesting the heterogeneous nature of
the immune response to Ro/SSA antigen [57].

The presence of anti-La/SSB in SLE patients has main-
ly been associated with sicca symptoms [58]. SLE anti-
Ro/SSA-positive patients frequently present with non-
fixed nonscarring cutaneous lesions of subacute cuta-
neous lupus erythematosus or evidence of sicca syndrome
(SS/lupus erythematosus overlap) [59]. In these patients
the presence of the autoantibody is correlated with late-
onset disease (after the age of 55 years) and lupus-like syn-
drome associated with C2 or C4 deficiency [60, 61].

In a more recent study, Simmons-O’Brien et al. [62]
have explored the clinical relevance of anti-Ro/SSA anti-
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bodies in 100 patients with unselected connective tissue
disorders revealing their correlation with systemic fea-
tures as interstitial pulmonary disease, central nervous
involvement and vasculitis. Cutaneous manifestations,
particularly photosensitivity, malar dermatitis and dis-
coid lesions, were also reported [62].

Greek patients with rheumatoid arthritis and anti-Ro/
SSA positivity constitute a distinct clinical subgroup pre-
senting with erosive symmetric polyarthritis, a high inci-
dence of histopathological evidence of SS and intolerance
to D-penicillamine treatment [63].

Immunogenetic Associations

Several studies have so far reported the association
between anti-Ro/SSA and anti-La/SSB responses with
certain major histocompatibility complex (MHC) class II
alleles suggesting the MHC-dependent nature of the im-
mune response to these autoantigens. HLA-DR8 and
-DR3 were correlated with anti-Ro/SSA and anti-La/SSB
responses in patients with SS and SLE, while HLA-DR2 is
found to be associated with anti-Ro/SSA responses not
accompanied by anti-La/SSB [64–66]. A strong gene in-
teraction between HLA-DQ1 and -DQ2 alleles has been
associated with higher levels of anti-Ro/SSA and anti-La/
SSB antibodies in patients with SS [67]. In a subsequent
study of Fujisaku et al. [68], restriction fragment length
polymorphisms of the DQa and DQß genes have been
related to Ro/SSA precipitins in patients with SLE sug-
gesting a gene complementation mechanism involved in
the generation of the autoimmune response. In another
study, Reveille et al. [69] found that almost all of the anti-
Ro/SSA patients had a glutamine at amino acid sequence
position 34 of a DQA1 chain and a leucine at position 26
of DQB1 chain. It is noteworthy that the DQA1 0501
gene possesses glutamine at position 34 and it is found in
the majority of SS patients, across racial and ethnic
boundaries, suggesting its involvement in the predisposi-
tion to primary SS [70].

On the other side, Miyagawa et al. [71] have shown
that HLA class II allele distributions differ between anti-
Ro/SSA-positive Japanese patients according to the pres-
ence or absence of coexisting anti-La/SSB antibodies. The
presence of both anti-Ro/SSA and anti-La/SSB responses,
but not those to anti-Ro/SSA alone, were associated with
DRB1 alleles that shared the same amino acid residues at
positions 14–31 and 71 of the hypervariable regions of the
DRB1 chain [71].

Rischmueller et al. [72] provided a model of HLA-
restricted presentation of La/Ro peptide determinants
showing that the HLA DR3-DQA1*0501-DQB1*02
(DR3-DQ2) haplotype was primarily associated with a
diversified La/Ro RNP response containing precipitating
autoantibodies to La/SSB, whereas the haplotype HLA
DR2-DQA1*0102-DQB1*0602 (DR2-DQ1) was associ-
ated with a less diversified La/Ro RNP response involv-
ing nonprecipitating anti-La/SSB autoantibodies. Sco-
field et al. [73] also report that antibodies binding the 13-
kD fragment of 60-kD Ro/SSA autoantigen are more like-
ly to be found in the sera of patients with particular DQA1
and DQB1 alleles, while antibodies binding the epitope at
480–494 are found almost exclusively in the sera of
patients with a Bg/II 9.8-kb polymorphism of the T cell
receptor ß gene.

Finally, specific maternal MHC class II genes seem to
correlate with specific neonatal outcomes in neonatal
lupus syndrome. In fact, a recent study in Japanese wom-
en reveals that the maternal HLA-DR5 haplotype
DRB1*1101-DQA1*0501-DQB1*0301 was significantly
associated with neonatal cutaneous lupus but not congeni-
tal heart block in contrast to maternal HLA-DQB1*0602
carried on HLA-DR2 haplotypes which was correlated
with congenital heart block but not cutaneous neonatal
lupus [74].

Pathogenetic Role

Increasing evidence of direct involvement of anti-Ro/
SSA and anti-La/SSB antibodies in the pathogenesis of
tissue injury is supported by several studies. In fact, their
correlation with distinct clinical features as it is men-
tioned above, the local production of anti-La/SSB anti-
bodies in the salivary glands of patients suffering from the
syndrome [75], the detection of anti-Ro/SSA in skin biop-
sies of patients with subacute cutaneous lupus erythema-
tosus [76] and the strong association with congenital heart
block in neonates of anti-Ro/SSA-positive mothers [56]
are examples of their putative pathogenetic potential.
Meanwhile, in a recent study a co-variation of autoantibo-
dy levels and disease activity in 11 of 14 patients exam-
ined was demonstrated [77]. However, their precise role
remains unknown.

The study of the immune response to Ro/SSA and La/
SSB autoantigens could provide some clues for the gener-
ation of autoimmune responses towards the cellular com-
ponents. At this point the question is how intracellular
antigens such Ro/SSA and La/SSB are presented to the
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Table 4. Molecular mimicry of Ro60 and La/SSB autoantigens

Ro60

175NGWSHKDLLR184 485EYRKK*MD491

La/SSB

147HKAFKGSI154 93PSKLPEV109

N-protein VSV human myelin basic protein gag polyprotein FSV
YWNSQKDLLQ 151-EYRKKLMD158 139HKGFKGVD146 32PSKLSEV39

human DNA topoisomerase II
YKNFKGTI

VSV = Vesicular stomatitis virus; FSV = feline sarcoma virus.

immune system. It is known that the presentation of an
antigen to the immune system occurs either by tissue
damage and release of the cellular components to the cir-
culation or by active translocation of autoantigens from
the nucleus to the cytoplasm and selective presentation in
the cell surface. The first possibility seems to be weak in
the case of anti-Ro/SSA antibodies. In fact, in the study of
Blann et al. [78], no correlation between the presence of
anti-Ro/SSA and anti-La/SSB with endothelium damage
(estimated by von Willebrand levels) in SS was observed.
On the other side, several reports demonstrate the aber-
rant membrane localization of Ro/SSA and La/SSB au-
toantigens in disease states and in vitro experiments
under stressful conditions for the cell stimuli (UV light,
TNF-·, viruses). Studies in SS patients have shown cyto-
plasmic/surface staining of conjunctival epithelium and
increased expression of cytoplasmic La/SSB in the sali-
vary epithelium compared to control individuals [79].
Furthermore, Ro/SSA can be found on the membrane of
skin keratocytes of patients with SLE [80].

LeFeber et al. [81] have shown surface expression of an
antigen reactive with anti-Ro/SSA-positive sera after irra-
diation of keratinocytes with UV light, while Dorner et al.
[82] reported that TNF-· mediates the surface expression
of 52-kD Ro/SSA and La/SSB autoantigens on human
keratinocytes of patients with SLE and SS. In another
report, Baboonian et al. [83] demonstrated that infection
of epithelial cells with adenovirus 2 promotes the translo-
cation of La/SSB antigen from the nucleus to the cyto-
plasm and the cell membrane.

Programmed cell death (apoptosis) seems to be a
mechanism, which can explain the above findings. In the
study of Casciola-Rosen et al. [84], it was demonstrated
that during apoptosis of keratinocytes in response to UV
radiation, autoantigens are clustered in two different pop-
ulations in the apoptotic blebs. One population consisted
of Ro/SSA, fragmented endoplasmic reticulum and ribo-

somes, while the other contained DNA surrounded by
ribonucleoprotein antigens including Ro/SSA and Sn
RNPs.

The second major question raised in autoimmunity is
how these self-autoantigens break the immune tolerance.
There are several hypotheses accounting for autoantibody
production: molecular mimicry as a possible mechanism
of induction of autoimmune response has been so far
implicated; i.e. antibodies for foreign antigens would
cross-react with homologous self-proteins. Using protein
databases, sequence similarities of antigenic determi-
nants of Ro/SSA and La/SSB with other molecules have
been reported. Initially, it was shown that 60-kD Ro/SSA
contains a sequence homology of 7 of 8 amino acids with
vesicular stomatitis virus [85]. However, only a minority
of sera from anti-Ro/SSA-positive patients present au-
toantibodies directed to that region [86]. Subsequent
studies of antigenic epitope of 60-kD Ro/SSA antigen
175NGNSHKDLLD184 rvealed sequence similarity with a
conserved region on human HLA class II ß-chain [19].
Similarly, Tzioufas et al. [32] reported that the La/SSB
epitope HKAFKGSI presented sequence similarity with
fragments of human myelin basic protein and DNA topo-
isomerase II. Another antigenic La/SSB sequence (resi-
dues 88–105) demonstrated a sequence homology with a
retroviral gag protein suggesting a possible role for retro-
viral infection in the induction of anti-La/SSB response
[87]. Data regarding molecular mimicry of Ro/SSA and
La/SSB antigens are shown in table 4. Accumulated infor-
mation suggests that anti-Ro/SSA and anti-La/SSB re-
sponses are antigen driven rather than products of a non-
specific polyclonal B cell activation: the presence of a
selective and coordinated antibody response to polypep-
tides on the same particle provides such an evidence.
Topfer et al. [88] demonstrated intramolecular and inter-
molecular spreading of the anti-La/SSB response. Immu-
nization of healthy nonautoimmune mice with recombi-
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nant mouse La/SSB was initially directed against the La C
subfragment (amino acids 111–242) but rapidly spread to
involve the La A (amino acids 1–107) and La F (amino
acids 243–345) regions of the La/SSB antigen. Moreover
immunization with 60-kD Ro/SSA produced a high-titer
anti-Ro/SSA antibody response and anti-La/SSB auto-
antibodies [88].

Scofield et al. [89] have shown that the initiation of the
immune response to the Ro/SSA ribonucleoprotein in a
patient with SLE was similar to that following the inva-
sion of a foreign antigen. IgM anti-Ro/SSA appeared
shortly before IgG anti-Ro/SSA and disappeared as IgG
anti-Ro/SSA increased in titer and affinity [89].

On the basis of this theoretical model, Ro/SSA antigen
is processed and presented by molecules of the MHC as a
foreign antigen. This assumption is further supported by
the association of anti-Ro/SSA responses with HLA and T
cell receptor genes in SLE patients [90] suggesting that
anti-Ro/SSA production is antigen driven, a notion fur-
ther solidified by data revealed from epitope mapping
studies. In fact, it seems that activated B cells specific for a
certain epitope play an antigen-presenting role leading to
activation of specific T cells and induction of a T cell help
autoimmune response [91].

The pathogenic impact of anti-Ro/SSA and anti-La/
SSB in neonatal lupus syndromes seems to be consider-
able. However, although several hypotheses have been
proposed, the exact mechanism through which these au-
toantibodies bind the fetal conduction system and elicit a
local inflammatory response is unclear. Maternal IgG
anti-La/SSB and anti-Ro/SSA have been isolated from
affected fetal hearts, while animal studies revealed possi-
ble arrhythmogenic effects of these antibodies [92]. Alex-
ander et al. [93] reported that superinfusion of newborn
rabbit ventricular papillary muscles with IgG-enriched
fractions from sera containing anti-La/SSB and anti-Ro/

SSA antibodies reduced the plateau phase of the action
potential leading to alteration in Ca2+ influx. Garcia et al.
[94] using adult rabbit hearts showed that IgG-enriched
fractions from anti-La/SSB- and anti-Ro/SSA-positive
women induced conduction abnormalities and reduction
of the peak slow inward current. More recent data have
shown that IgG-enriched fractions and anti-52-kD-Ro/
SSA antibodies affinity purified from sera of mothers
whose children have congenital heart block induce com-
plete atrioventricular block in the human heart perfused
by the Langendorff technique [95]. The above data sug-
gest a direct pathogenetic role of these autoantibodies in
congenital heart block. IgG antibodies against a 57-kD
protein, found in 10% of SLE patients almost always with
the presence of anti-Ro/SSA antibodies are also proposed
as an additional risk factor in the pathogenesis of neonatal
lupus syndromes [86].

Therapeutic Perspectives

During the past decade, the molecular structure of Ro/
SSA and La/SSB antigens was elucidated and disease-spe-
cific epitopes, against which anti-Ro/SSA and anti-La/
SSB antibodies are directed, were identified. As long as
the mechanism of the elicited immune response in au-
toimmune disorders is better conceived as antigen driven,
new implications even at the therapeutic level are emerg-
ing. It is well known that prior oral administration of anti-
gen can lead to a state of specific immunological unre-
sponsiveness known as oral tolerance. Thus, the oral use
of Ro/SSA and La/SSB antigens and particularly of pep-
tides corresponding to immunodominant T cell epitopes
is proposed as a future intervention in patients with SS
inducing oral tolerance to the above autoantigens [97].
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Abstract

Autoantibodies produced by the mother and transported

into the fetal circulation are of significant importance in

the diagnosis of neonatal lupus syndromes. These hu-

moral autoimmune findings provide an unique opportu-

nity to assess the pathogenic role of autoantibodies

against the Ro(SS-A)/La(SS-B) complex, most notably

for congenital heart block. Current knowledge about the

involved autoantibody-autoantigen systems, including

recent therapeutic concepts of these autoimmune syn-

dromes, is summarized.
Copyright © 2000 S. Karger AG, Basel

Introduction

Neonatal lupus erythematosus (NLE) includes a vari-
ety of syndromes characterized by evidence of maternal
autoantibodies against the RNA protein complex Ro(SS-
A)/La(SS-B). Since these IgG antibodies have been pro-
duced by the mother and actively transported into the

fetal circulation, they can potentially lead to typical clini-
cal manifestations in the fetus and newborn. Therefore,
these entities are also called maternal-fetal autoimmune
syndromes. Although these diseases occur infrequently,
they provide a unique opportunity to investigate the
pathogenic importance of autoantibodies involved in fe-
tal tissue injury.

While isolated congenital heart block (CHB), as one of
the clinical syndromes, has been described in 1901 [1] for
the very first time, associated maternal diseases became
apparent in 1928 [2] and 1954 [3], respectively. Finally,
the typical association of maternal antibodies to Ro(SS-A)
has been described for CHB in 1983 [4, 5], whereas anoth-
er syndrome, cutaneous NLE, has been described in 1981
[6, 7] (table 1).

Table 1. Neonatal lupus syndromes – History

Year Finding Ref.

1901 First description of isolated CHB 1
1928 CHB in 2 children whose mother suffered from

Mikulicz’s disease 2
1954 Discoid LE in a newborn infant with subsequent

development of SLE in the mother 3
1981 Association of NLE with antibodies to Ro/SS-A 6, 7
1983 Association of CHB with anti-Ro/SS-A antibodies 4, 5
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Fig. 1. Distribution of clinical manifesta-
tions of NLE.

Table 2. Clinical features of NLE

Rash
Erythematous, scaly
Photosensitive
Annular or elliptical
Face and scalp

Cytopenias
Hemolytic anemia
Thrombocytopenia
Leukopenia

Hepatosplenomegaly
Myocarditis/pericarditis
Pneumonitis?

Subtypes of NLE Syndromes

In general, the neonatal lupus syndromes can be differ-
entiated into a permanent manifestation, such as CHB,
and transient syndromes, such as cutaneous, hepatic and
hematologic involvement in NLE (fig. 1, table 2). Of note,
only 7–10% of all cases exhibit an association of CHB and
features of NLE. This indicates that factors other than
autoantibodies are involved in the manifestation of the
disease. CHB is the permanent or irreversible manifesta-
tion of NLE. Isolated CHB detected in utero is strongly
associated with autoantibodies reactive with the intra-
cellular soluble ribonucleoproteins, Ro(SS-A) (52 kD),
Ro(SS-A) (60 kD), and La(SS-B) (48 kD). Although the
majority of complete CHB occurs in conjunction with
maternal autoantibodies against the Ro(SS-A)/La(SS-B)
complex, it should be noted that not all CHB are me-
diated by these autoantibodies. These last cases account
for about 10% and occur frequently in infants suffering
from major anatomic lesions or mesotheliomas of the
atrioventricular node. Moreover, a neonatal heart block,
evident shortly after birth in the absence of maternal anti-
bodies, has to be differentiated and does not belong to
autoimmune-associated CHB. Most notably, most CHB
are third- and second-degree atrioventricular heart blocks
[8, 9]. The association of low-titer maternal anti-Ro(SS-
A)/La(SS-B) antibodies and first-degree atrioventricular
heart block as well as sinus bradycardia have been docu-
mented by our group [10, 11] and confirmed by other
reports [12].

Permanent cardiac and transient cutaneous disease are
the most common manifestations of NLE [9]. The tran-
sient NLE syndromes are characterized by a variety of
clinical manifestations (table 2). Most notably, an ery-
thematous skin rash with a predilection for the scalp and
periorbital area is most often apparent in the first few
postnatal months and also highly associated with mater-
nal antibodies against the Ro(SS-A) and La(SS-B) com-
plex. The disappearance of all these clinical manifesta-
tions within 6 months after birth coincides with the disap-
pearance of maternal autoantibodies. This observation is
of outstanding importance for the pathogenic relevance of
these autoantibodies in NLE.

Immunopathogenic Aspects

Fetal and neonatal injury is presumed to be due to the
transplacental passage of IgG autoantibodies into the fetal
circulation from the mother, who may have systemic
lupus erythematosus (SLE) or Sjögren’s syndrome or be
entirely asymptomatic. In contrast to the adult heart, the
fetal heart appears to be uniquely vulnerable. Although
we were able to detect first-degree atrioventricular blocks
in a variety of mothers with affected children [10], only
few reports state that atrioventricular heart blocks coin-
cided with the detection of specific autoantibodies in
adults [13, 14]. However, the unusual occurrence of heart
rhythm disorders in mothers with affected children, de-
spite exposure to identical circulating levels of autoanti-
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Fig. 2. Detection of CHB during pregnancy [adapted from 12].

Table 3. Gender bias in children with CHB compared to newborns
with other congenital heart rhythm disorders [17]

Group Females Males Ratio

19 8 2.381

Nonautoimmune heart blocks 14 18 0.771

Healthy children from SLE patients 22 23 0.96

1 Odds ratio 3.054, 95% CI, p ! 0.04.

bodies, is remarkable and points towards the specific vul-
nerability of the fetal heart.

Extensive studies have focused on the molecular char-
acterization of maternal autoantibody responses and cog-
nate antigens that might be involved in transcriptional
regulation. Although the precise pathogenetic mechanism
of autoantibody-mediated tissue injury is not defined, it
has been demonstrated in adult rabbit and human fetal
hearts that sera containing anti-Ro(SS-A) antibodies in-
duce atrioventricular block and inhibit L-type calcium
currents in isolated ventricular myocytes [15]. Since this
L-type calcium channel is expressed preferentially in early
life and is targeted by autoantibodies, it might explain
that the adult cardiac conduction system is not affected to
the same degree as that of the fetus and neonate.

However, several clinical observations in CHB remain
unexplained. Permanent disease does not occur in other
fetal organs, and abnormalities are not detectable in ma-
ternal cardiac function. Recent data from an US national
registry suggest that the timing of CHB is not randomly
distributed throughout gestation. Bradycardia (identified

by auscultation and ultrasound and confirmed by fetal
echocardiogram) is most often detected during the mid to
late second trimester (fig. 2) [12, 16].

Another unexplained observation is that not all moth-
ers with diseases associated with these antibodies have
affected offsprings, implying involvement of as yet un-
known factors, some of which are likely to be fatal. In this
context, a recent study could demonstrate a female to
male ratio of about 3:1 among children with CHB (ta-
ble 3) [17]. Since data of a national US registry have
reported a 1:1 ratio [12], careful further analysis is needed
to make some final conclusions whether gender is one of
the predisposing factors for CHB. However, it is well
known that NLE without cardiac manifestations affects
girls more often than boys [9].

There may be differences in expression or accessibility
of Ro(SS-A) or La(SS-B) antigens in fetal compared to
adult hearts. An alternative 52-kD Ro/SS-A mRNA de-
rived from the splicing of exon 4 encoding amino acids
168- 245 including a leucine zipper has been identified
[18]. This isoform was recognized by 26 of 30 mothers
with CHB children. Additional studies provided evidence
that this mRNA is expressed in fetal but not adult hearts.
On the other hand, a variety of studies have shown that
the leucine zipper represents the major autoantigenic epi-
tope of this protein [19–26]. Therefore, it raises the ques-
tion to which degree alternative splicing products play a
significant immunopathogenic role. Most recently, Mi-
randa-Carus et al. [27] have shown that immunization
with different 52-kD Ro(SS-A) proteins independent of
the mRNA splicing product can lead to conduction de-
fects in BALB/c mice. These observations suggest a strong
arrhythmogenic effect of the autoantibodies.

Despite studies on the major autoantigen complex,
other groups have focused on different autoantigenic sys-
tems. Thus, Li et al. [28] suggested that a candidate fetal
factor may be endogenous retrovirus-3 (ERV-3) that en-
codes an open reading frame for an 68-kD envelope pro-
tein. This protein is expressed at high levels in placental
syncytiotrophoblast and fetal hearts. Most recently, Hors-
fall et al. [29] could provide strong evidence for a patho-
genic role of anti-ERV-3 antibodies by analysis of one
newborn with CHB and concomitant antibodies followed
by a healthy child without detectable anti-ERV-3 anti-
bodies. Maddison et al. [30] described an additional anti-
gen of 57 kD recognized by 8/21 (38%) mothers of
affected neonates. Sequencing of p57 DNA demonstrates
that this antigen is clearly distinct from Ro(SS-A) and
La(SS-B). In addition, sera from paired serum samples
from mothers with CHB children provided evidence that
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Table 4. Requirements for anti-Ro/SS-A and anti-La/SS-B to be
involved in the development of NLE

Maternal autoantibodies must be present in the fetal circulation
Putative antigens (Ro/SS-A or La/SS-B) must be present in the

target fetal tissues
Putative antigens (Ro/SS-A or La/SS-B) must be accessible to the

autoantibodies

Table 5. Accessibility of autoantigens in the target fetal tissue

Detection of Ro/SS-A and La/SS-B on the surface of
the fibers of the affected heart [50]

Induction of Ro/SS-A and La/SS-B membrane
expression by
UV irradiation [51]
Estradiol [52, 53]
TNF-· [26]

Detection of Ro/SS-A and La/SS-B in apoptotic blebs
on the cell surface of
Cultured keratinocytes after UVirradiation [33]
Apoptotic cardiocytes in culture [37]

calreticulin represents an autoantigenic target in CHB
[31]. Most remarkably, this molecule is involved in the
cellular calcium transport system and may also be part of
the Ro(SS-A)/La(SS-B) complex under certain circum-
stances [32]. Further experimental work is needed to
establish whether these autoantibodies can influence the
calcium transport of myocytes and subsequently lead to
heart rhythm disorders.

The mechanism by which antibodies might interrupt
critical intracellular events in the fetal myocyte or cells of
the specialized conducting system is largely unknown. For
antibodies to Ro(SS-A) and La(SS-B) to be causal in the
development of NLE, a variety of requirements must be
fulfilled (table 4).

One of the major questions concerns the accessibility
of the intracellular antigens to their autoantibodies (ta-
ble 5). Casciola-Rosen et al. [33] have shown that Ro(SS-
A) and La(SS-B) antigens are present on small and large
surface blebs during the process of apoptosis in neonatal
keratinocytes, as demonstrated by immunofluorescence
staining using confocal microscopy. Reichlin et al. [34]
provided evidence for the accessibility of the candidate
antigens to their cognate antibodies by the finding of anti-
bodies to 60-kD Ro(SS-A) and 52-kD Ro(SS-A) in acid
eluates of a heart from a fetus with CHB who died at 34
weeks of gestation. The enrichment of these antibodies
was not demonstrated in eluates from the brain, kidney,
or skin. Our group [35] reported an enhanced membrane
expression of 52-kD Ro(SS-A) and 48-kD La(SS-B) on
keratinocytes after exposure to tumor necrosis factor-·.
Kinetic analysis revealed that 52-kD Ro(SS-A) was maxi-
mal after 2 h of exposure and remained increased, where-
as 48-kD La(SS-B) peaked by 1 h and rapidly decreased to
baseline values within 3 h. In general, UV irradiation,
estradiol and tumor necrosis factor-· have been shown to
induce surface expression of intracellular antigens, where-
as apoptosis constitutes one of the major pathways of
membrane expression (table 5). Alternatively, several
lines of evidence suggest that autoantibodies can pene-
trate living cells, subsequently alter function, and cause
cell death [36]. These data are consistent with the conclu-
sion that autoantigens can shuttle between different sub-
cellular compartments and, finally, appear accessible on
the cell surface under certain circumstances (table 4).
Induction of apoptosis in cultured cardiocytes resulting in
surface accessibility of the Ro(SS-A)/La(SS-B) antigens
has been demonstrated recently [37]. The data of this
study suggest a role of apoptotic cardiocytes leading to
subsequent leukocyte infiltration and tissue damage.

Cross-reactivity between maternally derived autoanti-
bodies and fetal cardiac antigens has been postulated as a
major mechanism involved in the pathogenesis of CHB.
Li et al. [28] reported that affinity-purified anti-La(SS-B)
antibodies but not anti-52-kD Ro(SS-A) antibodies recog-
nize laminin, a high-molecular-weight noncollagenous
structural glycoprotein present on the sarcolemmal mem-
brane of cardiocytes. Several anti- La(SS-B) antibodies
bound to the sarcolemmal membrane of human fetal car-
diocytes at 9–15 weeks of gestation, as demonstrated by
immunofluorescence, whereas binding to adult hearts was
not observed. These results support the hypothesis that
‘molecular mimicry’ between laminin and La(SS-B) may
account, in part, for the vulnerability of the fetal heart.

The timing of heart block is not random. Bradycardia
is most often identified between 18 and 24 weeks of gesta-
tion. During this period of time, echocardiographic exam-
ination is able to identify atrioventricular heart blocks
higher than 1st degree. The development of CHB during
the same time coincides with a period of remarkably
increased passage of maternal IgG autoantibodies into the
fetal circulation [38, 39]. It is accepted that maternal
autoantibodies bind preferentially to the fetal cardiac
conduction system. Subsequently, immunopathogenic
mechanisms have the potential of enhancing the inflam-
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Table 6. Potential arrhythmogenic effects of anti-Ro/SS-A and anti-
La/SS-B autoantibodies

Perfusion of newborn rabbit ventricular papillary muscles with IgG-
enriched fractions results in reduction of cardiac repolarization
consistent with an alteration of calcium transport [54, 55]

Induction of AV block in whole young adult rabbit hearts perfused
with IgG fractions [15]

AV block in the human fetal heart perfused with affinity-purified
anti-52-kD Ro/SS-A [40]

Inhibition of L-type Ca2+ currents [15, 40]
Induction of conduction defects in BALB/c mice after immunization

with 52-kD Ro(SS-A) proteins [27]

mation of the atrioventricularnode that results into calci-
fication, fibrosis, and fatty degeneration of the cardiac
conduction system, especially the atrioventricular node,
evident around the end of gestation. Most notably, a vari-
ety of studies could demonstrate an arrhythmogenic effect
of autoantibodies against Ro(SS-A)/La(SS-B) proteins
[15, 40] (table 6).

Clinical studies have especially focused on the mater-
nal autoantibody profile, but a unique pattern could not
be identified. Anti-52-kD Ro(SS-A) and La(SS-B) re-
sponses detected by enzyme-linked immunosorbent assay
(ELISA) and immunoblot represent the most frequently
occurring findings in mothers whose children have NLE
and CHB, respectively. The presence of anti-U1 RNP in
the absence of anti-Ro(SS-A)/La(SS-B) antibodies occurs
only in cases of isolated cutaneous disease and not in
mothers of infants with cardiac manifestations [39, 41].

The Central Autoantigenic Complex

Ro(SS-A)/La (SS-B)

Antibodies directed towards this RNA-protein com-
plex are not only associated with neonatal lupus syn-
dromes; they can also be detected at lower frequencies in
patients with SLE, subacute cutaneous LE, Sjögren’s syn-
drome and in other autoimmune diseases.

In a study of sera from 31 mothers of children with
CHB, Julkunen et al. [42] demonstrated by ELISA that
97% reacted with 52-kD Ro(SS-A), 77% reacted with 60-
kD Ro(SS-A), and 39% reacted with La(SS-B). In earlier
studies, our group [38] used an ELISA to investigate
quantitative and qualitative differences of anti-Ro(SS-A)
and anti-La(SS-B) antibodies in sera from 16 infants with
CHB and their mothers compared with 8 healthy anti-

Ro(SS-A)-positive infants born to mothers with SLE. No
serum sample contained IgM autoantibodies. All 16
(100%) infants with CHB had anti-52-kD Ro(SS-A) anti-
bodies, 14 (88%) had anti-La(SS-B), and 9 (56%) had anti-
60-kD Ro(SS-A) compared with 6 (75%) control infants
with anti-52-kD, 3 (38%) with anti-48-kD, and 2 (25%)
with anti-60-kD. The anti-52-kD Ro(SS-A) and anti-
La(SS-B) antibody levels were significantly higher in in-
fants with CHB than in the controls, whereas the anti-60-
kD Ro(SS-A) IgG levels of sera from infants and mothers
from the CHB and control groups were similar. Detection
of the anti-60-kD response depends remarkably on the
properties of the antigen and the test since only the native
form apparently represents the autoantigen. In this con-
text, several groups [9, 34, 41] could demonstrate that
immunoprecipitation may be the optimal assay for evalu-
ating the anti-60-kD Ro(SS-A) response, whereas other
detection systems may underestimate the frequency of
these autoantibodies.

Previous work suggested that there was no ‘unique’
high-risk profile that predicted the development of neona-
tal lupus [43]. However, other studies [9, 38–40, 44–46]
have proposed that a low-risk profile consisted of anti-
Ro(SS-A) antibodies of low titer without anti-La(SS-B)
antibodies. Antibodies to 52-kD Ro(SS-A) in association
with the anti-48-kD La(SS-B) were less frequently de-
tected in mothers of healthy compared with affected chil-
dren but significantly dominated the group of mothers
with CHB children.

Silverman el al. [45] evaluated the maternal antibody
profile in two groups of sera, 41 obtained from mothers
whose children had manifestations of neonatal lupus (21
with CHB and 20 with skin manifestations) and 19 from
lupus patients known to have anti-Ro(SS-A) and/or anti-
La(SS-B) antibodies and healthy children. Significantly
higher levels of anti-La(SS-B) and anti-52kD Ro(SS-A)
antibodies were demonstrated in the mothers of affected
children.

Although it is not known how maternal antibodies
influence the development of cardiac versus cutaneous
manifestations of neonatal lupus, to date antibodies to
U1-RNP in the absence of anti-Ro(SS-A) and/or La(SS-B)
occur preferentially in cutaneous NLE but not in CHB.
The segregation of anti-U1-RNP antibodies with cuta-
neous disease may be a useful maternal marker and is con-
sistent with our observations in mothers with CHB chil-
dren in whom these antibodies were not found [39]. Thus,
these antibodies are most likely characteristics of a differ-
ent entity that apparently does not bear a high risk for
CHB.
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Table 7. Maternal diagnosis of mothers with CHB children

Literature Charité

Asymptomatic mothers 38% 23 (79%)
SLE 39.5% 5 (17%)1

Sjögren’s syndrome 13.2% 1 (3%)
Other diagnoses 9.3%

1 2 with secondary Sjögren’s syndrome.

Maternal Characteristics

The immunogenetic features of mothers of affected
children appear to be closer to Sjögren’s syndrome than to
SLE [9, 41, 42]. Early evidence for that came from a vari-
ety of studies typing HLA loci of mothers of affected chil-
dren [42]. The assocciation of HLA-DR3 and HLA-B8
and absence of HLA-DR2 in mothers with CHB offspring
are strikingly similar to the HLA association found in Sjö-
gren’s syndrome. The autoantibody profile that normally
lacks high-titer anti-DNA antibodies in mothers of af-
fected children provides further substantial evidence.
Based on long-term follow-up studies, asymptomatic
mothers do not invariably become ill, and if an asymp-
tomatic mother does develop lupus, it is not likely to be
life-threatening. As shown in table 7, most mothers of
CHB children do not have systemic autoimmune or other
diseases. Moreover, CHB is associated with substantial
morbidity and mortality. Only about 10–25% of mothers
actually fulfill the criteria for the diagnosis of SLE.

Treatment

We need to differentiate between therapeutic options
for the mother and the fetus during pregnancy and treat-
ment for the fetus after delivery. Guidelines for these situ-
ations are not well established and are empirically based
on a variety of case reports.

Treatment during Pregnancy

Although the morbidity of CHB is greatly enhanced
and the pathophysiologic mechanisms of maternal au-
toantibodies appear to play a major role, evidence of ther-
apeutic approaches based on large controlled studies is
still missing. Numerous anecdotal cases support the use of
dexamethasone for the treatment of effusions and possi-
bly incomplete block [46]. Although treatment of affected
fetuses with dexamethasone and in some case reports in
conjunction with plasmapheresis has successfully dimin-
ished effusions [9, 41, 46–48a], this therapy has not been
shown to reverse established third-degree block. It should
be noted that prevention, other than serial echocardio-
graphic evaluation, is not supported by any study. How-
ever, combined therapy using plasmapheresis and dexa-
methasone has led to marked reduction in maternal
autoantibodies during pregnancy and represents a safe
treatment [48b]. Treatment with sympathomimetics may
be beneficial in fetuses with hydropic changes [10, 49].
One study [49] evaluated the effects of two sympathomi-

metic agents, isoprenaline and salbutamol. While no firm
conclusion can be drawn, a beneficial effect of isoprena-
line is becoming established.

Although prospective clinical trials of fluorinated ste-
roids in women with anti-Ro(SS-A) and/or anti-La(SS-B)
antibodies are still needed to evaluate for this therapy,
dexamethasone is administered frequently in low dosages
after CHB has been diagnosed. Given the low rate of
CHB, it is recommended to monitor these pregnancies in
specialized centers.

Figure 3 shows a current approach modified from
Tseng and Buyon [41] to identify high- and low-risk preg-
nancies in mothers with autoimmune diseases based on
expressed autoantibody specificities. However, healthy
mothers with pregnancies complicated by CHB cannot be
identified by this means. In general, the clinical approach
to cardiac manifestations of neonatal lupus includes ob-
stetric and rheumatologic management of fetuses with
CHB and fetuses with a normal heart beat but at high risk
of developing CHB (mothers with antibodies to Ro(SS-
A)/La(SS-B) antigens plus previous sibling with neonatal
lupus). Unfortunately, there is currently no possibility of
identifying asymptomatic women since there is no reason
to screen all pregnant women for anti-Ro(SS-A) or anti-
La(SS-B) antibodies. In women known to have these
autoantibodies, we recommend close follow-up with echo-
cardiograms between 16 and 29 weeks of gestation, be-
cause this is the most prevalent time for detection of fetal
bradyarrhythmia. These recommendations are based on
observations that incomplete or unstable block or evi-
dence of myocarditis might benefit from treatment with
dexamethasone in an attempt to prevent permanent fibro-
sis. Complete atrioventricular block is not reversible, but
some investigators might argue that if it is complete but
identified days after a normal rate, there might be some
chance for reversibility.
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Fig. 3. Management of pregnancies at risk
for CHB modified according to Buyon et al.
[12].

Therapy after Birth

Most fetuses require administration of glycosides and/
or sympathomimetics to improve cardiac function and to
maintain a sufficient heart rhythm [10], respectively. In
some rare cases with associated cardiomyopathy, heart
transplantation has been performed successfully [9]. Two
thirds of children require permanent pacing within 3
years after birth, whereas almost 100% have pacemakers
at the age of 18. Pacemaker therapy is well accepted for
CHB and apparently leads to a normal life expectancy
[9].

Recurrence Rate, Mortality and Morbidity

The recurrence rate of CHB has been reported to be
low at approximately 8–18% (table 8). However, we have
reported a mother with a series of CHB girls only inter-
rupted by one healthy boy [17]. But this is nearly three
times higher than the risk for CHB in a primigravida with
the putative antibodies. CHB carries a significant mortali-
ty (14–22%, table 9) and morbidity. A recent study by
Buyon et al. [12] demonstrated that mortality is highest
within the first 3 months (fig. 4).

The identification of the gestational period in which
the fetal heart might be most vulnerable is one of the cen-
tral problems of the understanding of the immunopatho-
genesis and of therapeutic approaches. Bradycardia (iden-
tified by auscultation and ultrasound and confirmed by
echocardiogram) is most often detected during the mid to
late second trimester [16].

Fig. 4. Mortality of congenital heart block in relation to the time of
gestation [adapted from 12].

Table 8. Recurrence rate of anti-Ro/SS-A-
associated CHB

Julkunen et al. [42] 2/26 (8%)
McCune et al. [57] 2/12 (17%)
Buyon et al. [12] 8/49 (16%)
Charité Berlin 3/5 (60%)

Table 9. Mortality of CHB

Julkunen et al. [2] 5/34 (15%)
McCune et al. [57] 3/14 (21%)
Buyon et al. [12] 22/113 (19%)
Charité Berlin 4/29 (14%)
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Conclusions

The neonatal lupus syndromes represent a unique chal-
lenge for rheumatologists, dermatologists, obstetricians,
perinatologists, and pediatric cardiologists to identify
pregnancies at risk for these entities and to care for the
patients. There are several unresolved problems in under-

standing the pathogenicity of antibodies to components of
the Ro(SS-A)/La(SS-B) system in NLE. Fetal factors are
being sought that could be involved in cardiac antigen
processing during the second trimester. Finally, we need
to concentrate resources on this rare disease to perform
additional basic scientific as well as controlled therapeutic
studies.
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Abstract

Antiphospholipid syndrome (APS) is a disease character-

ized by venous and arterial thromboses or spontaneous

abortions and the repeated detection of antiphospholipid

antibodies (aPL). APS may be associated with another

autoimmune disease (secondary APS), particularly sys-

temic lupus erythematosus (SLE), or unrelated to an

underlying disease (primary APS). APS affects almost all

organs. In addition to the clinical criteria, lupus anticoag-

ulant testing and immunological aPL determinations are

required to establish the diagnosis of APS.
Copyright © 2000 S. Karger AG, Basel

Antiphospholipid syndrome (APS) is characterized by
venous/arterial thrombosis and/or recurrent fetal loss and
the repeated detection of antiphospholipid antibodies
(aPL) directed against phospholipid-protein complexes.
APS may be associated with another autoimmune disease
(secondary APS), particularly systemic lupus erythemato-
sus (SLE), or unrelated to an underlying disease (primary

APS/PAPS). The clinical syndrome of thrombosis, recur-
rent abortions and neurological symptoms in conjunction
with the detection of aPL was first described by Hughes
[1] in 1983. It was therefore proposed that the syndrome
be named after him [2]. The history of this syndrome (ta-
ble 1) dates back to William Osler, who described stroke
as a symptom of lupus.

Epidemiology and Classification

APS may be one of the most common autoimmune
diseases, i.e., one of the major causes of organ damage in
autoimmune diseases. A clear classification system is
needed to properly assess the frequency of occurrence of a
syndrome. The most common criteria for classification of
APS (table 2) differ from other classification criteria in
rheumatology because they have not been tested in large
numbers of patients. Hence, no data on their specificity
and sensitivity are available.

New preliminary criteria for the classification of APS
(table 3) have recently been proposed. They clearly define
the obstetric complications of APS and provide clear-cut
data on aPL and their isotypes. After the manuscript had
been accepted the preliminary criteria for the classifica-
tion of the APS were published in a modified form [48].
Many subsets of APS are encountered in practice (ta-
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Table 1. History of antiphospholipid
syndrome (Hughes’ syndrome) Authors Year Discovery

1952 circulating anticoagulant in SLE
Moore and Mohre [4] 1952 BFP-STS especially in SLE
Bowie et al. [5] 1963 thrombosis in SLE despite circulating anticoagulant
Feinstein and Rapaport [6] 1972 introduction of the term ‘lupus anticoagulant’
Nilsson et al. [7] 1975 SLE associated with lupus anticoagulant and

intrauterine death
Thiagarajan et al. [8] 1980 nature of lupus anticoagulant: aPL
Hughes [1] 1983 anticardiolipin syndrome
Harris et al. [9] 1983 aCL – detection by radioimmunoassay
Loizou et al. [10] 1985 aCL – detected by ELISA
Galli et al. [11]
McNeil et al. [12]
Matsuura et al. [13]

1990
1990
1990

� ß2-GP1-cofactor

Gharavi et al. [14] 1998 classification criteria of workshop on APS

Table 2. Suggested criteria for the APS [15]

Clinical Laboratory

lupus anticoagulant
Arterial thrombosis IgG anticardiolipin (120 GPL units)
Pregnancy loss

(unexplained)
Thrombocytopenia

IgM anticardiolipin (120 MPL units)

Patients should have at least one clinical and one laboratory fea-
ture to make the diagnosis. The laboratory test should be positive on
at least two occasions, 8 weeks apart.

Table 3. Preliminary international criteria for the classification of
APS [14]

1 aPL documented on at least two occasions 6 weeks apart and
occurring at the same time as:

2 One or more clinical features that have previously been associat-
ed with aPL in serum

ad 1. aPL: aCL IgG, IgM or IgA
or
LA

ad 2: Thrombosis criteria
a One or more episodes of arterial or venous thrombosis, con-

firmed by imaging or Doppler studies or histopathology.
b Three or more unexplained consecutive miscarriages or one

or more unexplained deaths of a morphologically normal
fetus at or after the 10th week of gestation or one or more
premature births at or before the 34th week of gestation, asso-
ciated with severe preeclampsia or placental insufficiency

c Two or more episodes of reversible cerebral ischemia
d Multiple sclerosis-like syndrome or focal neurologic deficit,

otherwise unexplained

Associated features – not criteria
1 Thrombocytopenia !100,000/mm3

2 Hemolytic anemia with reticulocytosis and positive Coombs test,
not induced by drugs

3 Transverse myelopathy, otherwise unexplained
4 Livedo reticularis
5 Unexplained mitral or aortic valve thickening and/or regurgita-

tion of blood, demonstrated by echocardiography
6 Unexplained chorea, observed by a physician
7 Migraine, onset within 1 year of a positive test for aPL in blood

ble 4). There seems to be a genetic basis for APS since a
familial occurrence of primary APS is observed in 10% of
the cases. The HLA loci DR4, DR7 and DRw53 were also
found to be associated with APS.

Etiology and Pathogenesis

aPL are a group of heterogeneous antibodies directed
against phospholipid-binding proteins such as ß2-glyco-
protein I (ß2-GPI) (or apolipoprotein H), prothrombin,
protein C, protein S, thrombomodulin, annexin V and
kininogen. The term ‘antiphospholipid antibody’ is there-
fore incorrect, since the antibody is actually directed
against a phospholipid-protein complex, but the name has
been kept for historical reasons. Although the negatively
charged phospholipid cardiolipin plays the most impor-
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Table 4. Classification of APS into various
subsets [16]

‘Primary’ vs. ‘secondary’ APS
Other clinical subsets

Patients characteristics
Sex
Age

Sporadic vs. familial forms
Nature of the vessels involved

Veins vs. arteries
Macro- vs. microvasculature

Preferential clustering of symptoms
Cerebral ischemia/left-sided heart

valve lesions
Cerebral ischemia/livedo reticularis

(Sneddon’s syndrome)
Disease course

One-shot vs. multiple-shot
Timing of events

Catastrophic APS
Purely obstetrical APS

tant role, phosphatidylserine, phosphatidylethanolamine,
and phosphatidylcholine may also form part of the com-
plex. The target epitope is still not fully explained. The
reactions between cardiolipin and ß2-GPI are the best
known. ß2-GPI was first described in 1961, and its amino
acid sequence has been decoded. This glycoprotein acts as
a natural inhibitor of blood coagulation at various sites of
the coagulation cascade. The binding site for cardiolipin
on ß2-GPI is also known [reviewed in ref. 17].

aPL have an effect on all phospholipid-dependent
hemostasis processes. Phospholipid-dependent hemosta-
sis tests are delayed in vitro due to the inhibition of pro-
thrombin activation. Thrombophilia in these patients can
be attributed to the interactions between aPL and natural
inhibitors of blood clotting such as activated protein C,
protein S, and thrombomodulin. This suggests that aPL
are of pathogenetic importance for the development of
thrombosis. This pathogenetic role is supported by evi-
dence from animal experiments. During their passive
transmission or active immunization, aPL induce throm-
bocytopenia, fetal resorption (equates to spontaneous
abortion in humans), and increased coagulation.

Thrombosis does not develop in all patients with aPL.
Additional pathogenetic mechanisms must contribute to
the development of thrombosis (secondary ‘hit’). Endo-
thelial vessel damage (infection?) is a very important
developmental factor. Thrombosis is the primary symp-

tom of both primary and secondary APS. Veins and arter-
ies of all calibers located throughout the entire body may
be involved.

Clinical Manifestations

Thromboses

Recurrent thromboses are the major clinical manifes-
tation of APS. 2.5–3.5% of all patients with APS – wheth-
er primary or secondary – are affected by thrombosis each
year. Venous thrombosis (65–70%) is more common than
arterial thrombosis. aPL can be detected in 8–10% of all
patients with venous thrombosis. Based on data from ret-
rospective studies, the risk of phlebothrombosis in pa-
tients who test positive for aPL was estimated to be 2.7–
11.9 [see review in ref. 18]. Venous thromboses are usual-
ly localized in the lower extremities and are frequently
multiple and bilateral. Around one third of the cases are
complicated by pulmonary embolism, which can lead to
pulmonary hypertension and right heart failure. Primary
thromboses in the pulmonary circulation can also result in
pulmonary hypertension. aPL are detected in around 10%
of all patients with pulmonary hypertension. Postthrom-
botic symptoms associated with ulcers, frequently on the
medial malleolus, are further complications of leg and pel-
vic vein thrombosis. Thromboses of the axillary veins,
subclavian vein, inferior vena cava, superior vena cava
and veins of various organs may also occur together with
the corresponding clinical symptoms (table 5).

Among the great vessels, arterial thrombosis most
commonly involves the cerebral arteries, but may also
affect the coronary arteries and those in the extremities
and other organs (table 5). aPL can be detected in 18–20%
of all stroke patients under 50 years of age. The risk of
stroke development in aPL-positive patients was deter-
mined to be 2.33–10.6. General risk factors such as smok-
ing, hypertension, metabolic disease, heart disease and
the use of oral contraceptives increase the risk of throm-
bosis.

One third of all APS patients experience only one
thrombotic event; the other two thirds have recurrent
thromboses. A history of thrombosis is the greatest risk
factor for future occlusions. Eighty percent of the patients
have either recurrent venous thromboses or recurrent
arterial thromboses, whereas only 20% have both arterial
and venous thromboses [19]. The time between the initial
occurrence and the recurrence may be several days to sev-
eral years. The reason why some patients develop venous
thrombosis (approximately 48%), whereas others develop
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Table 5. Thromboses and clinical
manifestations of APS Venous

vessel clinical finding

Arterial

vessel clinical finding

phlebothrombosis
thrombophlebitis

Brain stroke, transient ischemic attack
multi-infarction dementia

Skin

Lungs
Liver
Adrenal glands
CNS

livedo reticularis, ulcers
pulmonary embolism
pulmonary hypertension
Budd-Chiari syndrome
Addison’s disease
sinus vein thrombosis
sinus cavernosus
thrombosis

Heart
Kidney

Liver
Skin
Eyes

valvular vegetatins
myocardial infarction
thrombus, cardiomyopathy
renal infarction
microangiopathy
hepatic infarction
finger gangrene
retinal artery occlusion

arterial thrombosis (approximately 38%) or recurrent
abortions is still unexplained.

Disseminated clot formation in numerous vessels asso-
ciated with multiple organ failure and thrombocytopenia
is called ‘catastrophic antiphospholipid syndrome’ [20].
This form of the disease can be lethal.

Complications during Pregnancy and the Puerperium

Over half of all thromboses in women with APS occur
during pregnancy, the puerperium, and during oral con-
traceptive use. Two prospective studies found that 5 and
12% of pregnant women with APS developed thrombosis
or stroke, despite prophylactic heparin administration in
a portion of cases [21, 22]. Furthermore, the occurrence of
preeclampsia and gestational hypertension is higher in
women with APS.

The complications of APS that may involve the fetus
are recurrent miscarriage, intrauterine fetal death, prema-
ture delivery (30%) and fetal growth impairment (30%). In
patients with APS, fetal loss is more common after the
10th gestational week than in early pregnancy. Some
investigators even doubt whether early abortion should be
considered as the sole clinical criterion for APS [23]. It is
difficult to assess the risk of fetal loss in healthy women
with aPL. Additional factors that increase the risk of spon-
taneous abortion in healthy aPL-positive pregnant females
have not yet been identified. Genetic factors, infections,
medications, and subclinical autoimmune disease or envi-
ronmental factors have been discussed as possible factors.
High aPL titers in pregnant women with SLE are predic-
tive of spontaneous abortion, with rates of 50–85% re-
ported in the literature. Eighty percent of all untreated
healthy women with high aPL titers and previous fetal loss
have another miscarriage in a subsequent pregnancy.

Thrombosis and infarction of the placental vessels are
considered to be responsible for the complications in
pregnancy but, since these placental pathologies do not
occur in all cases, other mechanisms have also been pro-
posed [see review in ref. 24].

Hemocytopenia

Thrombocytopenia, hemolytic anemia and, less fre-
quently, leukocytopenia are observed in patients with
APS, whereas thrombocytopenia is usually mild and does
not cause severe bleeding. The prevalence was estimated
to be 30–50% for mild thrombocytopenia (50–100 ! 109/
l) and 5–10% for severe thrombocytopenia (!50 ! 109/l)
[25]. The cause of thrombocytopenia is complex and the
details are not fully understood. Binding of aPL to the
platelet membrane apparently occurs in the presence of
ß2-GPI.

Thirty percent of patients with idiopathic thrombocy-
topenic purpura are aPL-positive, and they probably form
a special subset.

Hemolytic anemia in APS may occur as isolated hemo-
cytopenia or in conjunction with thrombocytopenia. He-
molytic anemia is frequently associated with anticardioli-
pin antibodies (aCL) of the IgM isotype.

A connection between APS and thrombotic thrombo-
cytopenic purpura and hemolytic-uremic syndrome is
assumed as well.

Neurological Manifestations

The most common neurological manifestations of APS
are ischemic stroke and transitory ischemic attack. aPL-
positive stroke patients are usually younger than 50 years
of age and have a very high rate of recurrence. The recur-
rence usually takes place within 1 year after the initial
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event. aPL are also an independent risk factor for devel-
opment of cerebral infarction in the elderly.

Cardiac etiologies such as valvular defects, intracar-
diac thrombus and other risk factors must also be taken
into consideration. Multiple infarction events can result
in dementia.

A number of other neurological symptoms are associat-
ed with aPL detection, but a causal relationship cannot be
identified in every case (table 6). A possible connection
between APS and Sneddon’s syndrome, which is charac-
terized by symptoms of cerebrovascular disease, hyper-
tension and livedo racemosa, has been suggested. aPL can
be detected in at least a portion of patients with Sneddon’s
syndrome.

There is also a significant correlation between aPL
positivity and CNS manifestations in patients with SLE.
It therefore seems justified to perform aPL testing as well
as magnetic resonance imaging and single-photon com-
puted emission tomography (SPECT) in addition to the
conventional neurological work-up in all SLE patients
with suspected neurolupus. These are currently the best
studies for identifying clinically silent CNS manifesta-
tions of APS.

Cardiac Manifestations

The potential cardiac manifestations of APS are valvu-
lar heart disease (usually involving the mitral valve), coro-
nary artery occlusion, intracardiac thrombus, pericardial
effusion, dilatative cardiomyopathy due to occlusion of
smaller vessels, and early bypass occlusion after coronary
surgery.

High aPL titers are an independent risk factor for myo-
cardial infarction and sudden cardiac death. The risk is
even higher in patients who also have antibodies against
oxidized low-density lipoproteins (ox LDL). aPL and
antibodies to ox LDL were found to cross-react [27]. Since
the latter antibodies play a role in the progression of arte-
riosclerosis, a connection with arteriosclerotic complica-
tions is being debated.

Morphological studies of pathological changes in the
heart valves in patients with APS have revealed fibrin
deposits and subsequent valvular damage in the absence
of an inflammatory process. Hence, the way in which aPL
antibodies are involved in the pathogenesis of endocar-
diac lesions remains unclear.

Skin Manifestations

The skin manifestations of APS are multifarious.
Thrombotic occlusions of the cutaneous vessels are not
always the underlying cause. Livedo reticularis, a reticular

Table 6. Neurologic syndromes associated
with aPL [26]

Cerebrovascular ischemia
Stroke
Transient ischemic attack
Sinus thrombosis

Ocular ischemia
Dementia

Acute ischemic encephalopathy
with Sneddon’s syndrome
without Sneddon’s syndrome

Atypical migraine-like events
Seizures
Chorea
Transverse myelopathy
Guillain-Barré syndrome
Transient global amnesia
Psychiatric disorders
Orthostatic hypotension

and cyanotic circular discoloration of the skin with a pale
central area, and skin ulcers are the most common skin
manifestations of APS. Livedo reticularis may form a
fine, closed pattern caused by anastomoses between the
very small skin vessels that result in reduced blood flow,
or it may have a larger, lightening-like shape with small
areas of necrosis. The latter type is classified as livedo
racemosa in the European literature. Livedo reticularis is
observed in 20–50% of patients with APS.

The skin ulcers most commonly associated with APS
are small ulcers secondary to necrotizing purpura. They
are usually 0.5–3 cm in diameter and occur on the ankles,
feet, calves and leave a white atrophic scar (atrophie
blanche) after healing. Other large ulcers are reminiscent
of pyoderma gangrenosum. Postthrombotic ulcers may
also occur.

Large areas of skin necrosis, finger and toe gangrene,
malignant atrophic papulosis-like lesions, multiple subun-
gual splinter hemorrhages, anetoderma and melanoderma
are also associated with APS.

Renal Manifestations

In APS clots may form in the arteries and veins as well
as in the glomerular capillaries, which can result in pro-
teinura, hypertension, renal cortical infarction, and renal
failure. A correlation between vessel transplant thrombo-
sis in chronic dialysis patients and aPL has also been
reported.
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Various Other Organ Manifestations

Addison’s disease due to thrombosis of the adrenal
vessels, intestinal vessel occlusion with intestinal necrosis,
and Budd-Chiari syndrome with hepatic vein thrombosis
may also occur in APS. Hepatic artery occlusion with liver
infarction, fibrin thrombi in the lesser liver vessels with
hepatomegaly and increased enzyme activity, splenic in-
farction and occlusion of other organ vessels are less com-
mon.

aPL in Infectious Diseases

There is a strong correlation between aPL and infec-
tious diseases. Syphilis was the first infectious disease in
which anticardiolipin antibodies were identified as the
‘reagin’. AIDS, malaria, borreliosis, leprosy, tuberculosis,
and streptococcal, mycoplasmal, salmonella and coli in-
fections as well as measles, mumps and infectious mono-
nucleosis are associated with aPL at various rates of fre-
quency. In infectious diseases, aPL do not need ß2-GPI
for binding in enzyme-linked immunosorbent assays
(ELISA), nor are they associated with the development of
the clinical symptoms of APS. Hence, the pathogenetic
importance of aPL associated with infectious diseases is
fundamentally different from that in SLE and PAPS.

Laboratory Diagnosis

aPL can be detected using the lupus anticoagulant (LA)
test or immunological tests.

Lupus Anticoagulant

The LA test was originally used in patients with SLE
[3]. By definition, LA consists of immunoglobulins that
interfere with one or more in vitro phospholipid-depen-
dent coagulation tests. Several methods of LA testing
have been developed because of the heterogeneity of LA,
among other things. Since none of these methods cover all
variants of LA, the SSC Subcommittee for Standardiza-
tion of Lupus Anticoagulants published a set of guidelines
and revised criteria for testing [28, 29]. In accordance
with these guidelines, multi-step LA testing is recom-
mended according to the following scheme:

(1) abnormal screening test;
(2) demonstration that the abnormality of the screen-

ing test is due to an inhibitor;
(3) demonstration that the inhibitor is PL dependent,

and
(4) confounding coagulopathies (e.g., FVIII, FIX) ruled

out.

LA Screening Tests. The most commonly used screen-
ing tests for the detection of LA are the activated partial
thromboplastin time (APTT), kaolin clotting time (KCT),
and diluted Russell viper venom time (dRVVT) tests.
These tests may exhibit extremely variable differences in
sensitivity and specificity depending on the manufactur-
er. It is therefore recommended to perform two indepen-
dent screening tests in doubtful cases. Additional screen-
ing tests include the tissue thromboplastin inhibition
(TTI) test, plasma clotting time (PCT) test, and the textar-
in clotting time test [review in ref. 29, 30].

Identification of LA as Inhibitor. The identification of
LA as the inhibitor is achieved using a plasma exchange
technique. In the presence of LA, the extended clotting
time cannot be corrected by addition of normal plasma.
These plasma exchange techniques are poorly standard-
ized, and they are affected by a number of variables.

Confirmation Tests. The most commonly used confir-
mation tests include the platelet neutralization test and
various modifications of the dRVVT, TTI and APTT
tests [review in ref. 29, 30].

Immunological Tests

In addition to the aforementioned coagulation tests,
aPL diagnosis should always include immunological de-
termination of aPL. Since the introduction of the ra-
dioimmunoassay by Harris et al. [9] and the introduction
of the ELISA shortly thereafter [10], immunological de-
termination of aPL is almost always performed using the
ELISA (table 1).

For the sake of completeness, we also mention the use
of FACS analysis for the determination of aCL [31].

The principle of the ELISA is based on the binding of
cardiolipin or other phospholipids (e.g., phosphatidylser-
ine, phosphatidic acid, phosphatidylethanolamine) to the
ELISA plate and subsequent binding of aPL and detection
of the bound antibodies with an enzyme-labeled isotype-
specific anti-human antibody.

Although the principles of these tests are the same as
those of any ELISA test, many modifications specific to
anticardiolipin tests have been introduced. The sensitivi-
ty and specificity of the anticardiolipin test and other
antiphospholipid tests depend on a few factors enumer-
ated below and the experience of the tester.

Pre-Analytical Considerations. Immunological aPL
tests can be performed in serum as well as in plasma.
Lipemic sera should not be used in testing. Repeated
freezing and thawing of the sera can lead to false-positive
test results.
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Purity of the Antigen. The purity of the antigen (198%)
is of immense significance for the specificity of the test.

Antigen Presentation. Besides the phosphodiester
groups, the glyceride portion including the fatty acid
chains is important for antibody binding [32–34]. ELISA
plates are often coated with cardiolipin or phosphatidyl-
serine in ethanol, then evaporating the ethanol to dryness
(either by exposure to air or nitrogen).

As Rauch and Janoff [35] showed using the example of
phosphatidylethanolamine, the phospholipid bilayer that
forms in these methods has only limited reactivity with
aPL. Only the hexagonal structure (HII) of phospholipid
generates epitopes that react with aPL.

Blocking Medium. As already mentioned, the anticar-
diolipin test originally had many shortcomings. The use of
fetal calf serum (FCS) or adult bovine serum instead of
gelatin to block the plates increased the sensitivity of the
ELISA.

Dilution Buffer. In 1984 and 1985, some investigators
[10, 36] observed a sharp increase in the readings of posi-
tive samples relative to negative controls when about 10%
(v/v) FCS or adult bovine serum in phosphate-buffered
saline was used as the serum diluent. aPL require a cofac-
tor for phospholipid binding. In 1990, several groups [11–
13] reported that ß2-GPI is such a cofactor, and that the
aPL are directed against a complex of phospholipid and
ß2-GPI. This explains why the assay was more sensitive
with 10% FCS or bovine serum. The amount of ß2-GPI
used as the blocking medium and in the dilution buffer
has a decisive effect on the sensitivity and specificity of
ELISA aPL determinations. The concentration of ß2-GPI
in FCS is approximately 600 Ìg/ml. Hence, the concen-
tration of ß2-GPI is approximately 60 Ìg/ml in dilution
buffers containing 10% FCS. The ß2-GPI concentration is
only 2 Ìg/ml at the 1:100 dilution generally used in ELISA
systems. Therefore, the serum concentration of ß2-GPI is
not high enough to achieve sufficient sensitivity or, espe-
cially, specificity. For reasons of standardization, defined
amounts of human ß2-GPI should be added to the dilu-
tion buffer. The use of Tween 20 in the sample dilution
buffer is a controversial issue in the literature. Last but
not least, the ion strength of the dilution buffer has a great
effect on the signal-to-noise ratio [34].

Incubation Time. The incubation time must be long
enough (approximately 1 h) to ensure solid-phase satura-
tion and, hence, the binding of even low-avidity anti-
bodies [37]. Incubation of the plates at 37°C seems to
yield nonvalid results.

Isotypes. Determination of the IgG, IgM, and IgA iso-
types is of great clinical importance (see above) and is

dependent on the specificity of the conjugates used for
determination.

Quantitative Analysis. A quantitative analysis of aPL
using standards should be performed, first, because the
curve is sigmoidal and nonlinear and, second, because the
aPL titer is important for establishing the diagnosis as well
as for assessing the course of the disease (see above). A
minimum of five standard points should be used. Despite
numerous efforts, the standardization of the available
ELISA still leaves a lot to be desired. Lyophilized stan-
dards, first for IgG and IgM antibodies and later for IgA
antibodies, have been introduced as a result of interna-
tional workshops [38, 39]. One GPL unit was thereby
defined as 1 Ìg/ml of IgG antibody and MPL and APL
units were similarly defined as 1 Ìg/ml IgM and IgA anti-
bodies, respectively. Hence, these antibodies obtained by
affinity chromatography were standardized according to
mass units, not immunological activity. Because of non-
uniform cut-off computations among other things, the aPL
prevalences given in the literature tend to vary. According
to accepted criteria of the signal-to-noise theory, the cut-
off value should be calculated as ‘x + 3s’, where ‘x’ is the
mean of a sufficiently large group of healthy controls and
‘s’ represents the standard deviation [40].

ß2-Glycoprotein I Antibodies. In addition to the role of
ß2-GPI as a cofactor for aPL binding, several independent
research groups [11–13] have shown that (at least a por-
tion of) ‘aPL’ are directed against ß2-GPI and that they
can be detected in vitro if the antigen is coated on nega-
tively charged surfaces. Matsuura et al. [41] showed that
strong aPL binding occurs when ß2-GPI is coated on elec-
tron or gamma-irradiated plates in the absence of anionic
phospholipids. It is assumed that the ß2-GPI undergo a
conformational change that exposes the cryptic epitope
that is the target for aPL.

ß2-GPI antibodies are detected using only human ß2-
GPI isolated from human plasma by precipitating it with
perchloric acid followed by heparin affinity chromatogra-
phy and other chromatographic techniques if necessary.
The initial perchloric acid precipitation step seems to be
of importance for preventing proteolytic cleavage of ß2-
GPI, which is functionally inactive. The coating concen-
tration of ß2-GPI should range between 3 and 10 Ìg/ml.
Absolutely lipid-free inert proteins such as bovine serum
albumin should be used as the blocking medium. FCS is
therefore not recommended as a blocking medium. Iso-
type determination is performed using monospecific con-
jugates purified by affinity chromatography. In addition
to the IgG and IgM antibodies, determination of IgA anti-
bodies also appears to play an important role [42].
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Table 7. Exclusion criteria for primary APS [43]

Malar rash
Discoid rash
Oral or pharyngeal ulceration, excluding nasal septum ulceration or

perforation
Frank arthritis
Pleuritis, in the absence of pulmonary embolism or left-sided heart

failure
Pericarditis, in the absence of myocardial infarction or uremia
Persistent proteinuria 10.5 g/day, due to biopsy-proven immune-

complex-related glomerulonephritis
Lymphopenia !1,000/Ìl
Antibodies to native DNA, by radioimmunoassay or Crithidia

fluorescence
Anti-extractable nuclear antigen antibodies
Antinuclear antibodies of 1 1:320
Treatment with drugs known to induce aPL

In summary, it can be concluded that, according to the
classification criteria for APS at least one laboratory
parameter must be positive on two occasions at least 8
weeks apart in addition to the clinical criteria.

Diagnosis and Differential Diagnosis

The overlap of APS symptoms with those of other
autoimmune diseases, especially systemic lupus erythema-
tosus, is of particular importance. The criteria in table 7
were therefore developed for exclusion of SLE and PAPS.

Therapy

The optimal therapy for APS is still being debated
because of the lack of large-scale treatment studies. Pa-
tients with acute vessel occlusion may receive fibrinoly-
tics if there are no contraindications. After the first inci-
dence of phlebothrombosis, the patient must receive suffi-
cient continuous anticoagulation with coumarin deriva-
tives. Rethrombosis often occurs within 1 year after dis-
continuation of anticoagulants.

Recurrent thrombotic complications are also to be
expected in arterial thrombosis (particularly stroke) asso-
ciated with high titers of aCL-IgG or LA. Anticoagulation
therapy with platelet aggregation inhibitors should also be
considered in this case.

The concomitant occurrence of thrombocytopenia and
thrombosis is of major importance. These patients re-

quire especially careful monitoring. Khamashta [44] rec-
ommended the following procedure: anticoagulation with
an international normalized ratio of 2.0–3.0 in platelet
counts of 50–100 GPT/l, and additional corticosteroid
administration in platelet counts of less than 50 GPT/l.
Dapsone, danazol and chloroquine were reported to have
positive effects, even in corticosteroid-resistant thrombo-
cytopenia. Potential interactions with azathioprine and
warfarin must be taken into account if administered
simultaneously. When azathioprine is discontinued, the
anticoagulant effect of warfarin is increased, and bleeding
may occur. Fibrinolysis and plasmapheresis have been
tried in ‘catastrophic’ antiphospholipid syndrome.

Various therapies have been used for treatment of
recurrent abortion: low-dose aspirin, prednisone, low-
dose heparin, intravenous high-dose immunoglobulin,
and various combinations.

Based on the data of the available studies [45], the fol-
lowing recommendations can currently be made regard-
ing prophylaxis in women with a history of abortions and
positive aPL tests:
– 75 mg of aspirin per day after diagnosis of pregnancy;
– After detection of fetal heart sounds, additional dosage

of unfractionated heparin (e.g., 5,000 units every 12 h)
or

– low-molecular heparin (5,000–10,000 units per day);
– therapy can be discontinued in the 34th gestational

week; if there is a history of thrombosis, anticoagula-
tion can be continued for 6 weeks or, better yet, 2
months postpartum;

– due to the risk of heparin-induced osteoporosis, cal-
cium supplements, vitamin D3, and 1 h of fast walking
or other physical activity are also recommended.
If the recommended therapy fails to achieve satisfacto-

ry results or if thrombocytopenia is corticosteroid-resis-
tant, intravenous high-dose immunoglobulin administra-
tion (very expensive) in conjunction with low-dose aspirin
can also be considered in isolated cases [review in ref. 46].
Women with aPL should not take estrogen-containing
contraceptives, because they significantly increase the
risk of thrombosis in these patients.

In patients with underlying SLE, treatment of the
underlying disease depending on its activity level and
organ manifestations is also recommended in addition to
all measures against hemostasis (the prophylactic effects
of chloroquine and hydroxychloroquine have also been
discussed in recent years). Immunosuppressive therapy
alone is not sufficient in patients with thrombotic compli-
cations.
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Prophylactic treatment of patients with persistent aPL
or LA but no clinical symptoms of APS remains question-
able. We still do not understand why some of these
patients develop thrombosis and others do not. It is abso-
lutely essential to eliminate all additional risk factors for
the development of thrombosis (e.g., hypertension, hyper-
cholesterolemia, smoking, or estrogen-containing contra-

ceptives) in patients with LA and/or aPL. Khamashta and
Hughes [47] recommend a dose 75 mg of aspirin per day
in patients with persistent LA and/or moderate or high
IgG-aCL titers, even in those without a history of throm-
bosis. Careful clinical monitoring of this patient popula-
tion is also necessary in light of their very high risk of
thrombosis.
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Abstract

Uranium miners exposed to silica dust have a higher risk

of developing systemic sclerosis (SSc) and systemic

lupus erythematosus (SLE). Sera of 1976 former uranium

miners were analysed for autoantibodies typical of con-

nective tissue disease. The frequency of some of these

antibodies (anti-centromere, -topoisomerase I, -nucleo-

lar, -dsDNA, -Ro/SSA, -La-SSB and U1-RNP antibodies)

was significantly higher compared to a gender- and age-

matched control group and was associated with the

intensity of exposure as well as with clinical symptoms

of SSc or SLE. It was also shown that SSc-associated

autoantibodies may serve as an early indicator of dis-

ease development. Some differences in the autoanti-

body production between silica-dust-associated and id-

iopathic SLE/SSc were observed that might be caused by

environmental factors in the population of uranium min-

ers.
Copyright © 2000 S. Karger AG, Basel

The complex pathogenesis of autoimmune diseases is
poorly understood. Endogenous and exogenous factors
are involved in the ‘mosaic’ of autoimmune disease devel-
opment. Environmental factors operating in a genetically
susceptible host may initiate the pathological immune

process, often leading to the expression of specific autoim-
mune parameters. Indeed, many disease-specific autoan-
tibodies (AAb) are detectable prior to the manifestation of
the corresponding autoimmune disease. Early diagnosis
or the prediction of a risk of developing a disease is
becoming more and more important for the elaboration of
new prophylactic and therapeutic strategies as has been
shown for type 1 diabetes [1]. The combined analyses of
ICA, IAA, GAD and IA-2/IA-2ß antibodies have im-
proved the ability to predict diabetes in risk groups as well
as in the general population based on the level and num-
ber of AAb markers [2]. Viruses, toxins and dietary fac-
tors are discussed as putative environmental factors in
type 1 diabetes [3]. In systemic autoimmune diseases,
especially systemic sclerosis (SSc), crystalline silica (SiO2)
is one factor probably involved in the pathogenesis in
some cases.

Silica and Systemic Autoimmune Diseases

Exposure to high levels of silica dust has been linked to
an increased risk of developing several systemic autoim-
mune diseases, including SSc (scleroderma), rheumatoid
arthritis and systemic lupus erythematosus (SLE). As ear-
ly as 1914, SSc was described in a group of Scottish stone-
masons [4]. Subsequently, an association between silica
dust exposure and SSc was reported in the occupational
cohorts of South African gold miners and North Ameri-
can hard coal miners [5, 6]. In the last 30 years, an
increased incidence of scleroderma has been observed in
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East-German uranium miners heavily exposed to quartz
dust [7, 8]. In a prospective (historical) cohort study, a
high relative risk compared to the general population was
found (RR 17.8; 95% CI 6.5–9.5), with a nearly 100-fold
increased incidence in miners with diagnosed silicosis [9].
An association between SLE and exposure to quartz dust
has only recently been recognized [10, 11]. A study of a
cohort of workers handling silica in a Spanish scouring
powder factory suggests that highly exposed workers have
at least a 10-fold increased risk of having SLE [12]. A sim-
ilar risk was estimated in the cohort of uranium miners
heavily exposed to dust [13]. Both studies showed that the
kind and intensity of the exposure to quartz dust are sig-
nificant for the development of SLE or other connective
tissue diseases (CTD). A review of human studies present-
ing evidence for the association between silica and au-
toimmune diseases has recently been published [14].
Summarizing these studies, one can conclude that strong
exposure to quartz dust with a high content of silica may
predispose to or initiate the development of systemic
autoimmune diseases. Therefore, occupational risk
groups should provide ideal models for comparing pa-
tients who may suffer from the same disease, but differ in
their exposure to a specific environmental trigger.
Studying risk groups may give answers to the following
questions: (1) Is there a difference in symptoms, AAb
responses and immunogenetic markers between silica-
associated CTD and idiopathic CTD? (2) What are the
frequencies and the clinical relevance of AAb typical of
CTD in different clinical and exposure groups within the
risk group? (3) Can such AAb predict the development of
CTD in these persons? (4) What conclusions regarding the
induction of specific autoimmunity and development of
autoimmune diseases can be drawn from these results?

In this paper we will focus on AAb specificities and
their probable predictive value in uranium miners.

Occupational Situation in the Uranium-Mining

Industry of the Former German Democratic

Republic

In the south of the former German Democratic Repub-
lic, the Soviet-German company SDAG Wismut ex-
ploited uranium ore by underground mining in Western
Saxony and Eastern Thuringia. Shortly after the second
world war and up to the reunification of West and East
Germany, approximately 300,000 underground miners
were employed. Exposure to respirable dust containing
10–30% of quartz was extremely high in the so-called

‘wild years’ from 1946/47 until the mid-fifties due to very
poor working conditions (e.g., no or inadequate mechani-
cal ventilation). Respirable dust levels as high as 90–100
mg/m3 air were produced during dry-drilling [15]. Fresh-
broken quartz particles were regarded as crucial, because
of their biologically reactive crystalline surfaces [16].
Even after the fifties, the possibility of inhaling, ingesting,
or dermal incorporation [17] of large amounts of fresh-
broken dust occurred, for example, through dry-drilling.
For these reasons, the intensity and kind of exposure to
silica cannot be compared with those in ore mines of the
West European countries. Other components of the dust
may play a role in triggering autoimmune disease pro-
cesses. There was significant exposure through inhalation
to alpha-radiating substances. Exposure to noxious sub-
stances, such as arsenic (in some mines) or heavy metals,
was also possible. Furthermore, long-term hand-arm vi-
brations may play a pathogenic role in the development of
Raynaud’s phenomenon (‘vibration-induced white fin-
gers’; VWF) and scleroderma [18].

Material and Methods

Patients and Subjects

The different exposures and clinical groups of uranium miners
and control subjects are listed in table 1. Uranium miners were
recruited by control examinations for occupational lung diseases (sil-
icosis, lung cancer) at the Center for Occupational Diseases, Nieder-
dorf/Saxony from 1985 to 1990 and at the Medical Opinion Commu-
nity Niederdorf from 1991 to 1998. The exposure data were obtained
by case histories and by occupational exposure reports [15]. The case
histories revealed that all of the miners included in this study were
potentially exposed through inhaling, ingesting and skin incorpora-
tion of fresh-broken silica dust. The highly exposed miners worked
underground mainly as drillers and conveyors starting from 1946 up
to 1954/1955, the years with the highest dust levels. The miners were
divided into different groups according to the degree of exposure and
CTD symptoms (table 1). SSc and SLE were diagnosed according to
criteria of the American Rheumatism Association [19, 20]. Probable
SSc cases totaled 3–4 points of the score of Metzger and Masi [21]. In
cases of Raynaud’s phenomenon or VWF or diffuse interstitial lung
fibrosis, possible SSc development was assumed. Possible CTD or
SLE cases met one of the clinical criteria of the American College of
Rheumatology (ACR), formerly American Rheumatism Association
for SLE and/or at least two ‘minor signs’ of possible CTD develop-
ment (episodes of unexplained fever, sicca symptoms, long-lasting
very high erythrocyte sedimentation rates or lymph node swelling of
unknown cause). Furthermore, three different degrees of silicosis
were diagnosed [23].

Determination of AAb

All sera were screened for non-organ-specific AAb, especially for
antinuclear antibodies (ANA) by indirect immunofluorescence (IIF)
on acetone-fixed self-produced HEp-2 cells. AAb typical of CTD
were analyzed by various methods (table 2) (a) in patients positive for
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Table 1. Patients with CTD and different clinical and exposure groups of uranium miners

Patients/subjects n Criteria Ref.

52 The major criterion or at least two of the minor criteria
Exposed to quartz dust in (n = 38) or outside (n = 14)
uranium mines

18

Organic solvent-associated definite SSc 17 21

Uranium miners Miners working for more than 1 month in uranium mines
With symptoms of CTD 437

Probable SSc 12 3–4 points of the score of Medsger and Masi 21
Raynaud’s phenomenon or VWF 190
Diffuse lung fibrosis 69 Radiographically definite or suspected
Definite SLE (sSLE) 18 4 or more ACR criteria 19
Probable SLE 11 1 or 3 clinical ACR criteria 19
Possible CTD 90 1 clinical ACR criterion and/or 2 or more ‘minor criteria’ 19

Without symptoms of CTD 1,501
Heavily exposed 1,334 120 mg respirable dust/m3 (up to 100 mg dust/m3) 15
Slightly exposed 167 !20 mg dust/m3 15

Patients with idiopathic CTD 561
Definite SSc (iSSc) 185 The major criterion or at least 2 of the minor criteria 18
Definite SLE (iSLE) 194 4 or more ACR criteria 19
Probable SLE 82 2 or 3 clinical ACR criteria 19

Control group 200 Gender- and age-related persons of the same geographical
region and the same ethnicity, but without silica exposure
and without CTD symptoms

Table 2. Methods used for the determination of SSc and SLE/CTD typical AAb specificities

Autoantibody against Indirect
immuno-
fluorescence

Immuno-
diffusion

EIA
rec. protein
(eukaryot.)

EIA
rec. protein
(prokaryot.)

EIA
nat.
protein

Immunoblot

HEp-2
liver

! !

(PM-Scl-100)
!

Centromere proteins (ACA) HEp-2 !

(CENP-B)
!

(CENP-B)
!

(CENP-A, -B, -C)
Topoisomerase I (ATA) HEp-2 ! ! ! ! !

tRNA synthetases (Jo-1) HEp-2 ! ! ! !

dsDNA HEp-2
Crithidia

! (3 diff.
assays)

ssDNA !

Sm-proteins HEp-2 ! ! ! !

U1-RNP-proteins HEp-2 ! ! ! !

Ro/SS-A-proteins HEp-2 ! !

(Ro52, Ro60)
! !

(Ro52, Ro60)
La/SS-B HEp-2 ! ! ! !

PCNA HEp-2 ! !

ANA or anticytoplasmic antibodies (ribosomal or tRNA-synthetase
pattern) or (b) in patients negative for ANA or anticytoplasmic anti-
bodies, but with symptoms of probable or possible CTD develop-
ment (table 1). AAb against DNA topoisomerase I (ATA), histidyl-
tRNA synthetase (Jo-1), snRNP proteins (Sm and U1-RNP), La/SS-

B and Ro/SS-A proteins were determined by at least four different
methods: Ouchterlony technique, enzyme immunoassays (EIA) with
recombinant (Pharmacia & Upjohn, Elias Division, Freiburg, Ger-
many) and natural autoantigens (ORGenTec, Mainz and IMTEC,
Berlin, Germany) and immunoblot with HEp-2 proteins. For immu-
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Fig. 1. Frequencies of ANA in different groups of patients with SSc and different groups of uranium miners.
Fig. 2. Frequencies of ANA in patients with SLE and different groups of uranium miners.

nodiffusion (Ouchterlony technique), a mixture of soluble proteins
from rabbit thymus and calf spleen was used. Independent of the IIF
results, a further 1,000–1,200 uranium miners without CTD symp-
toms were tested for ATA, CENP-B, Jo-1, Ro52 and Ro60 AAb by
EIA using human eukaryotically expressed autoantigens (Pharmacia
& Upjohn, Elias Division, Freiburg).

Criteria for the Evaluation of AAb Findings

(1) ANA: According to the results in 1,200 blood donors, findings
were classified into low (1:80–1:160), middle (1:320–1:640) and high
titers (61:1,280). Middle and high ANA titers were found in less
than 1% and 0.1% in blood donors, respectively.

(2) The reactivities of AAb typical of CTD were classified into
three groups: low to middle titers in only one assay, middle titers in at

least two assays, middle to high titers in two or more assays including
positivity on the Ouchterlony assay (ATA, Jo-1, Sm, U1-RNP, Ro/
SS-A, La/SS-B antibodies) or Crithidia luciliae IF test (dsDNA anti-
bodies).

Non-Organ-Specific AAb Detected by IIF on

HEp-2 Cells

Antinuclear Antibodies

The frequencies of low, middle and high ANA titers in
different exposure and clinical groups of uranium miners
are shown in figures 1 and 2. The results can be summa-

1

2
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rized as follows: (1) In uranium miners without CTD
symptoms, the ANA frequencies were significantly higher
compared to the nonexposed control group (p ! 0.0001).
Furthermore, the heavily exposed miners had a higher fre-
quency of ANA compared to the slightly exposed (29.4 vs.
21.6%, in the case of the more relevant middle to high
ANA titers 14.3 vs. 9.0%). (2) In uranium miners with
possible SSc (fig. 1) or CTD/SLE development (fig. 2), the
ANA frequencies were again significantly higher com-
pared to miners without CTD symptoms: 36.3% (23%
middle to high titers, p = 0.0004) in patients with Ray-
naud’s phenomenon or VWF, 44.9% (24.6% middle to
high titers, p = 0.018) in patients with diffuse pulmonary
fibrosis, 61.1% (41.1% middle to high titers, p ! 10–7) in
patients with possible CTD/SLE development. (3) The
ANA frequencies in silica-associated definite and proba-
ble SSc were similar to those of patients with idiopathic or
organic-solvent-associated SSc (fig. 1). Furthermore, no
difference between silica-associated and idiopathic SLE
was observed, but the ANA frequency in probable SLE
was lower (fig. 2). (4) Comparing miners with silicosis
with those without silicosis, no difference in ANA fre-
quency could be found: 32.0 vs. 32.7% [23]. However,
within different silicosis groups, a higher frequency in
miners with high-degree silicosis with opacities was ob-
served compared to miners with low-degree silicosis:
38.7% (in 24.3% middle to high titers) vs. 29.4% (in
13.7% middle to high titers) [23].

In summary, there is a slight association of ANA fre-
quencies (especially the middle to high titers of ANA)
with the intensity of silica exposure and with the degree of
silicosis, but a high association with symptoms of possible
or probable SSc/CTD/SLE development.

Anticytoplasmic Antibodies

The frequencies of antibodies showing homogeneous,
lysosomal and cytoskeletal patterns were similar to those
found in the control group, but AAb with fine or middle
granular patterns were found more often. The highest fre-
quency of 8.7% was found in miners with diffuse pulmo-
nary fibrosis in the absence of other CTD symptoms.
3.2% (1.6% of high titers) of the miners with Raynaud’s
phenomenon or VWF, and 2.2% (all high titers) of the
miners with possible CTD/SLE development were posi-
tive. Again, there was an association with the intensity of
exposure:3.4% (1.3% of high titers) in heavily exposed vs.
0.7% (no high titers) in slightly exposed miners. A Golgi-
like pattern was seen in 2 highly exposed miners, 1 had
Raynaud’s phenomenon.

Autoantibodies against Mitotic Structures

Autoantibodies against mitotic structures were found
in 0.5% of the heavily exposed miners. Two miners had
NuMA/centrophilin antibodies, 3 had antibodies against
mitotic spindle apparatus (MSA/tubulin pattern), 1 had
antibodies against centriole and 1 had antibodies against
midbody antigens.

AAb Typical of SSc

Antitopoisomerase antibodies, anticentromere anti-
bodies (ACA) and some specificities of antinucleolar anti-
bodies are diagnostic markers for SSc. Furthermore, U1-
RNP, Ro/SS-A antibodies and ANA of unknown specific-
ities can be found in patients with SSc. The frequencies of
these AAb in different groups of uranium miners com-
pared to SSc patients and controls of the same ethnicity
and geographical region but without silica exposure are
shown in table 3 and figure 3. The following results are
highlighted: (1) In comparison to idiopathic and organic-
solvent-associated SSc, the frequency of SSc-specific AAb
was even higher due to the higher prevalence of antitopo-
isomerase antibodies (table 3). Antinucleolar antibodies
were less frequently detected. Anticentromere antibodies
showed the same frequency in the different exposure
groups of SSc. (2) Similar to the ANA frequencies, SSc-
specific AAb were associated with symptoms of SSc. Of
the uranium miners with probable SSc, 41.7% were posi-
tive compared to 10.1, 6.4 and 2.2% of miners with dif-
fuse lung fibrosis, miners with Raynaud’s phenomenon
and miners without SSc symptoms, respectively (table 3).
(3) In comparison to the nonexposed and nondiseased
control group, ACA, ATA and antinucleolar antibodies
were significantly (p ! 0.0001) more frequent even in the
group of miners without CTD/SSc symptoms (table 3,
fig. 3). There were only small differences between highly
and slightly exposed miners. Unlike the findings for ANA
frequencies, ATA were more prevalent in slightly exposed
compared to heavily exposed miners. (4) After 2–10 years
of follow-up of nearly 500 miners, disease progression or
the development of SSc only occurred in miners positive
for AAb typical of SSc (fig. 4). Of the ACA-positive min-
ers without SSc symptoms, 2 developed Raynaud’s phe-
nomenon 3 and 4 years later, 1 developed probable and
another definite SSc within 3 years. Furthermore, one
ATA-positive miner developed SSc within 3 years. Alto-
gether, 15.2% of the miners without SSc symptoms but
with SSc typical AAb developed SSc symptoms or disease.
Anticentromere-antibody- and ATA-positive miners with
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Fig. 3. Frequencies of the SSc typical ANA specificities ATA, ACA and NUC in patients with silica-associated SSc
and in different groups of uranium miners (probable SSc, miners with possible SSc development, heavily and slightly
exposed miners without CTD symptoms).

Table 3. SSc relevant ANA specificities in SSc patients and different clinical and exposure groups of uranium miners

Patients/miners n ACA1 ATA2 NUC3 Ro/SS-A Ab2 U1-RNP Ab2

Idiopathic SSc 185 27 (14.6) 65 (35.1) 25 (13.5) 4 (2.2) 8 (4.3)
Silica-associated SSc 52 7 (13.4) 28 (53.9 4 (7.7) 1 (1.9) 0
Organic solvent-associated SSc 17 2 (11.8) 6 (35.3) 2 (11.8) 0 0

Uranium miners with SSc symptoms
Probable SSc 12 2 (16.7) 1 (8.3) 2 (16.7) 1 (8.3) 2 (16.7)
Raynaud / VWF 190 7 (3.7) 2 (1.1) 3 (1.6) 5 (2.6) 0
Diffuse lung fibrosis 69 0 2 (2.9) 5 (7.2) 4 (5.8) 0

Uranium miners without
SSc symptoms 1,501 11 (0.7) 10 (0.7) 12 (0.8) 25 (1.7) 3 (0.2)

Heavily exposed 1,334 10 (0.8) 8 (0.6) 12 (0.9) 24 (1.8) 3 (0.2)
Slightly exposed 167 1 (0.6) 2 (1.2) 0 1 (0.6) 0

Control group 200 0 0 0 1 (0.5) 0

Figures in parentheses are percentages.
1 Anti-CENP-B positive / ACA on HEp-2 cells negative results were not included.
2 Low / middle-titred results in only one assay were not included.
3 Nucleolar fluorescence at titres 61:320.
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Fig. 4. Diagram of the results of AAb
testing in uranium miners with defi-
nite and probable SSc, miners with
possible SSc development and min-
ers without CTD symptoms. The
clinical development of AAb-posi-
tive miners within 2–10 years is indi-
cated.

Raynaud’s phenomenon developed probable or definite
SSc (within 2–4 years) more often: 42.9 and 33.3%,
respectively. Furthermore, 2 patients with diffuse lung
fibrosis, 1 with antinucleolar and 1 with anti-Ro/SS-A
antibodies, were diagnosed post mortem by histology as
having ‘sclerosis sine scleroderma’ (SSc without skin man-

ifestation). Taken together, 21.8% of the miners positive
for SSc-specific autoantibodies developed SSc symptoms
(Raynaud’s phenomenon), probable or definite SSc, in
particular 40% of the ACA-positive, 28.5% of the ATA-
positive and 4.8% of the antinucleolar-antibody-positive
miners.
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Fig. 5. Frequencies of the SLE marker antibodies anti-dsDNA and anti-Sm as well as other SLE-associated autoanti-
bodies (anti-Ro/SS-A, -La/SS-B, -U1-RNP) in different groups of uranium miners (miners with definite and probable
SLE, miners with possible CTD/SLE development, heavily and slightly exposed miners without CTD symptoms).

Antihistidyl tRNA Synthetase (Jo-1) Antibodies

In patients with SLE, probable SLE and probable SSc
no anti-Jo-1 reactivities could be found. In all other
groups of uranium miners, only low-titer results by en-
zyme immunoassay were seen in frequencies between 2.3
and 5.1%, similar to the results of the negative controls
(5.5%). In patients with diffuse lung fibrosis, the frequen-
cy of low-titer reactivities was 3.3%. No associations were
observed between a granular cytoplasmic pattern on HEp-
2 cells and anti-Jo-1 reactivities.

AAb Typical of SLE

The SLE marker antibodies against dsDNA, Sm and
PCNA as well as other AAb often associated with SLE
(Ro/SS-A, La/SS-B, U1-RNP antibodies) were analyzed.
The frequencies of SLE-relevant ANA specificities in dif-
ferent groups of uranium miners are shown in figure 5.
Clearly positive results were assumed for middle to high

titers in at least two different assays. Those results can be
summarized as follows: (1) 38.9% of silica-exposed defi-
nite SLE cases had anti-dsDNA, 33.3% anti-Ro/SS-A (in
5/6 cases together with anti-dsDNA) and 16.7% anti-La/
SSB antibodies. AAb to proteins of U-snRNP complexes
(anti-Sm, -U1-RNP, U2-RNP) or to proliferating cell
nuclear antigen could not be detected by the methods
used in any of the 18 SLE patients examined. By immuno-
blot, various reactivities not related to the known relevant
ANA specificities were seen in 9 patients. Of these, 4 were
negative for all AAb typical of CTD. (2) The AAb profiles
of probable SLE were similar, with a slightly lower preva-
lence of antibodies to dsDNA, Ro/SS-A and La/SS-B. (3)
Similarily to ANA frequencies, dsDNA, Ro/SS-A and La/
SS-B antibodies were associated with CTD/SLE symp-
toms and intensity of exposure. There was a highly signifi-
cant difference in dsDNA and Ro/SS-A frequency be-
tween miners without CTD symptoms and those with
possible CTD/SLE development (p ! 10–8 and 0.0001,
respectively) as well as a difference between heavily and
slightly exposed miners without CTD symptoms (p = 0.06
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Fig. 6. Summary of the frequencies of CTD typical autoantibodies (ACA, ATA, antinucleolar, anti-dsDNA, anti-
Ro/SS-A, anti-La/SS-B and anti-U1-RNP antibodies) in different groups of uranium miners (miners with definite
CTD = SLE + SSc, miners with probable CTD = probable SLE + probable SSc, miners with possible CTD develop-
ment, heavily and slightly exposed miners without CTD symptoms).

and 0.35, respectively). (4) In uranium miners without
SLE, AAb against U-snRNP proteins were rarely detect-
able; their titers were mostly low.

Of the miners with dsDNA antibodies, 32 could be fol-
lowed for 1–5 years after the first serum analysis. One
patient with neutropenia and elevated erythrocyte sedi-
mentation rate at the time of the first serum sample and
analysis developed kidney manifestation (cellular casts
and proteinuria 10.5 g/day) 1 year later. Furthermore, in
the group of anti-dsDNA-antibody-positive miners with-
out CTD symptoms, progression to possible CTD with
kidney involvement and elevated erythrocyte sedimenta-
tion rates were seen in 1 miner. No clinical progression
have been observed in dsDNA-antibody-negative miners
up to now.

Diagnostic and Prognostic Relevance of AAb

Typical of CTD in Uranium Miners

The frequencies of AAb typical of CTD in different
clinical and exposure groups of uranium miners are sum-
marized in figure 6. As was shown for the frequencies of

ANA (fig. 1, 2), ATA, ACA, antinucleolar, anti-dsDNA
and anti-Ro/SS-A antibodies (fig. 3, 5), there was a signifi-
cant to highly significant association with clinical symp-
toms of CTD and to a lesser degree an association to the
intensity of exposure to silica. These associations are
more important regarding the clearly positive results
(marked as black and dark gray in the figures). Except for
the slightly exposed miners without CTD symptoms, all
other groups of uranium miners had significantly higher
frequencies of clearly positive CTD AAb (p = 0.0054 to
!10–8) compared to the nonexposed control group. The
production of AAb typical of CTD was also significantly
different (p = 0.023) in the group of miners with symp-
toms of possible CTD development if we compare the
heavily and slightly exposed miners. The difference of
AAb frequency in highly exposed miners with possible
CTD development and those without CTD symptoms
was highly significant (p ! 0.0001). Taken together, the
CTD AAb frequencies are rising in the following se-
quence: nonexposed controls, slightly exposed miners
without CTD symptoms, heavily exposed miners without
CTD symptoms, slightly exposed miners with possible
CTD development, heavily exposed miners with possible
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CTD development, miners with probable CTD, miners
with definite CTD (SSc, SLE). Standing alone, these
results suggest that clearly positive AAb typical of CTD or
CTD-specific AAb may be predictive of CTD develop-
ment in the risk group of uranium miners. This hypothe-
sis is strengthened by the results of the follow-up studies,
as shown in figure 4. Unfortunately, the real predictive
value cannot be determined because of some limitations
in the follow-up of CTD AAb-positive patients: Primarily
the majority of miners of interest were heavily exposed in
the so-called ‘wild years’ from 1946/47 until the mid-
fifties. Most of these miners are older than 65 years and
age-related diseases (e.g., chronic ischemic heart diseases)
play a role in mortality. Furthermore, the consequences of
severe silicosis and alpha-radiation (lung cancer and other
tumors) are important causes of mortality. In addition,
some patients are no longer available for follow-up stud-
ies.

Questions arising from this study include: What is the
relevance of low- to middle-titer reactivities in highly sen-
sitive assays in the absence of positivity in other assays?
Are there additional parameters for predicting the devel-
opment of systemic autoimmune diseases? In the follow-
ing discussion, data and suggestions regarding defined
AAb specificities will be presented, some of which have
already been published [13, 22–25].

Anticentromere Antibodies

ACA are diagnostic markers of SSc, especially of the
CREST syndrome (calcinosis, Raynaud’s phenomenon,
esophageal dysmotility, sclerodactyly, telangiectasia) or
related scleroderma variants. They bind to the centromer-
ic regions of the chromosomes in all phases of the cell
cycle, giving the typical discrete speckled staining of the
interphase nuclei and the chromatin region of mitotic
cells by IFF on tumor cell monolayers. These AAb may be
detectable years before disease manifestation [27, 28] and
can therefore serve as an early indicator of the develop-
ment of SSc. This was also shown by our study on uran-
ium miners: 40% of the 20 ACA-positive miners without
definite SSc developed SSc symptoms (2 miners), proba-
ble (2 miners) or definite SSc (4 miners) within 2–4 years
(fig. 4). Of the other ACA-positive miners only 5 could be
followed up and no disease progression to SSc was seen.
Of these, 1 developed lung cancer and 1 died of cardiac
infarction.

The main targets of ACA have been identified as the
centromere-specific proteins CENP-A (17 kD), CENP-B
(80 kD) and CENP-C (140 kD) by immunoblotting [29].
It has been shown by Earnshaw et al. [30] that all tested

sera from patients with CREST syndrome reacted with
the CENP-B protein. For the detection of a possible early
immune response to centromere proteins not visible as
ACA by IFF on HEp-2 cells, we used a quantitative
enzyme immunoassay with a eukaryotically expressed
full-length (amino acids 18–599) human recombinant
CENP-B protein [31]. We tested sera of 1,750 uranium
miners including all sera with positive ACA immunofluo-
rescence and all sera of miners with SSc symptoms. Of the
27 miners positive for ACA by immunofluorescence, 26
were positive or strongly positive for CENP-B. Therefore,
CENP-B is also the main target protein in ACA-positive
uranium miners as has been shown for CREST patients
and ACA-positive patients with other diseases, e.g. other
CTD, pulmonary hypertension, primary biliary cirrhosis
[24, 30, 32]. In the group of ACA-negative miners, 48
were slightly (5–20 U/ml) and 7 clearly positive (120 U/
ml) for CENP-B antibodies. The frequency of anti-CENP-
B-positive/ACA-negative reactivities was highest in min-
ers with Raynaud’s phenomenon (4.7%), followed by SSc
patients (3.8%), heavily exposed miners without CTD
symptoms (2.8%) and slightly exposed miners without
CTD symptoms (1.8%). Patients with diffuse pulmonary
fibrosis alone had no elevated levels of anti-CENP-B anti-
bodies. By analyzing a greater cohort of miners with Ray-
naud’s phenomenon in this study, it has been shown that
the frequency of CENP-B reactivities is lower than de-
scribed in an earlier study [24]. Nevertheless, the preva-
lence is significantly higher in these patients (p = 0.009) as
well as in heavily exposed miners (p = 0.05) compared to
the nonexposed control group. Therefore one may suggest
the importance of anti-CENP-B response in predicting
SSc development in risk groups even if ACA were not
detectable by immunofluorescence or masked by a high-
titer ANA of other specificity [24]. This may be confirmed
by the results on nonexposed patients with possible
(mainly Raynaud’s phenomenon) and probable SSc de-
velopment showing a frequency of 7% [24]. The follow-up
of anti-CENP-B-positive patients and miners should re-
veal if (a) these AAb are early indicators for the develop-
ment of CREST or related scleroderma variants and/or
(b) whether there are hints of an epitope spreading. Anti-
CENP-B antibodies in the absence of the typical IFF pat-
tern may represent the primary autoimmune response
with a reaction to only one epitope. Later on, more epi-
topes could be involved thus allowing the exact diagnosis
of ACA by IFF. To investigate this hypothesis 22 anti-
CENP-B positive, ACA-negative miners were tested at
intervals of 2 years. In 16 of the 21 miners with low-titer
CENP-B antibodies, the immune responses disappeared
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within 2–6 years. Only 5 showed a continuous low-titer
response, 2 over a period of 6 years. The only available
miner with a clearly positive anti-CENP-B response (26.6
U/ml) but without ACA fluorescence (this negativity was
confirmed by an independent investigator) developed
positive ACA with a titer of 1:640 (CENP-B: 1100 U/ml)
after 6 years. Therefore epitope spreading may be possible
in rare cases. The clinical relevance of this is not yet clear
and requires a further follow-up of additional ACA-nega-
tive/CENP-B-antibody-positive patients. In the clinical
follow-up, no progression to scleroderma could be seen in
the 22 miners. One miner with a continuous low-titer
anti-CENP-B response over a 6-year period died of lung
cancer. Interestingly, there was a significantly (p = 0.009)
higher prevalence of lung cancer in the group with CENP-
B antibodies (10.9%) compared to the group without such
reactivity (3.7%).

It is not clear why anti-CENP-B antibodies can be
identified in sera not showing the typical ACA fluores-
cence. Perhaps in those cases, the primary autoimmune
response is not polyclonal but induced by molecular mim-
icry to one (to the main?) epitope on CENP-B. To detect
anti-CENP-B, Verheijen [33] used an ELISA with a
cloned C-terminal CENP-B fragment of 60 amino acid
residues that seems to be identical with the CE1 epitope
described by Earnshaw et al. [34]. Both have shown that
this region is the main CENP-B epitope recognized by vir-
tually all ACA-positive patient sera. Since some ACA-neg-
ative sera recognize this epitope [33], the C-terminal
region of CENP-B (CE1) may be the candidate epitope for
the ACA-fluorescence-pattern-negative, CENP-B-anti-
body-positive sera described in this study. In some cases,
the primary autoimmune response may be directed to the
main CENP-B epitope, which is not detectable by IFF on
cell lines. It remains to be elucidated whether this is
induced by molecular mimicry. An antigen-driven pro-
cess may lead to an intra- and intermolecular ‘determi-
nant spreading’ of the autoimmune response resulting in a
polyclonal reaction to various independent epitopes of
centromeric proteins and in a positive immunofluores-
cence typical of ACA.

Antitopoisomerase Antibodies

ATA are marker antibodies for SSc variants with a
poorer prognosis than ACA-positive SSc. ATA-positive
patients more often have internal manifestations, espe-
cially lung fibrosis. The prevalence of ATA in silica-asso-
ciated SSc was higher than in idiopathic SSc (table 3) in
part due to the very high frequency (71.4%) observed in
the group of SSc patients who were exposed to quartz

dust outside uranium mines. This again may be the
result of selecting the more serious forms of SSc for eval-
uation as an occupational disease at the Center for Occu-
pational Diseases (since 1990 at the Medical Opinion
Community Niederdorf). Nevertheless, among the 38
uranium miners with definite SSc, the ATA frequency is
still higher (42.1%) compared to idiopathic SSc. This dif-
ference may not be gender-related (most of the patients
with idiopathic SSc are women) since ATA was found
equally among males and females in other studies [35,
36]. Variations in genetic determinants may result in dif-
ferent responses to different triggering mechanisms. In-
deed numerous immunogenetic differences were found
between silica-associated and idiopathic SSc, the most
significant differences were among the ATA-positive pa-
tients [26, 37]: HLA-DPB1 alleles with glutamic acid res-
idue at position 69 (HLA-DPB1*0601, *1301, *1701):
29% in silica-associated SSc vs. 71% in idiopathic SSc
(p = 0.018), HLA-DRB1*0301: 69% in silica-associated
SSc vs. 5% in idiopathic SSc (p = 0.0002), HLA-
DQB1*0201: 77% in silica-associated SSc vs. 15% in
idiopathic SSc (p = 0.001), TNF·2: 84.6% in silica-asso-
ciated SSc vs. 20% in idiopathic SSc (p = 0.001), TNF-
308A: 77% in silica-associated SSc vs. 15% in idiopathic
SSc (p = 0.001). Different epitope recognition on DNA
topoisomerase I may account for the described discrep-
ancies in HLA alleles. However, no major differences in
immunoblot with three overlapping recombinant topo-
isomerase I fragments between ATA-positive sera of id-
iopathic SSc (n = 19) and silica-associated SSc (n = 13)
could be found. The N-terminal (amino acid residues 1–
362), middle (amino acid residues 231–483) and C-ter-
minal (amino acid residues 364–765) fragments gave
positive results in 12, 11 and 14 sera in idiopathic SSc
and in 7, 3 and 7 sera in silica-associated SSc, respective-
ly. The analysis of the sera positive for more than one
fragment also showed no significant differences. This
issue can only be resolved by performing an epitope
analysis. Nevertheless, the immunogenetic differences in
ATA responders among idiopathic and silica-associated
SSc patients suggest that the mechanisms that lead to the
production of this AAb are distinct. The dichotomy in
different HLA alleles should mean that different peptide
motifs were chosen for HLA class II molecule loading
and T helper cell/B cell activation [38]. Since uranium
miners were also exposed to several metals (Cd, Ni, Se,
As, Co, Cu, Fe, Mn, Bi, Ag, Pb, Zn, Sn, Li, B, Sb), abnor-
mal cell accumulation of metals together with reactive
oxygen species generated under the influence of silica
[39] might be of critical pathogenic importance in the
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development of ATA. As has been shown by Casciola-
Rosen et al. [40], scleroderma autoantigens, including
topoisomerase I, are uniquely fragmented by metal-cata-
lyzed oxidation reactions. They were cleaved at highly
specific sites in a reaction that required metal binding
(Fe, Cu) and the generation of reactive oxygen species.
This cleavage might have permitted the efficient presen-
tation of previously cryptic determinants with the poten-
tial for breaking T cell tolerance. Differences in metal
exposure depending on the mines may in part explain
why, unlike all other AAb typical of CTD, ATA were
more prevalent in slightly exposed compared to highly
exposed miners (table 3).

As has been shown for ACA, the clearly positive ATA
response may also indicate a higher risk of SSc develop-
ment because of the association of its frequency with SSc
symptoms (fig. 3) and because of the observed disease
progression in 28.5% of the ATA-positive miners (fig. 4).
One patient with probable SSc developed definite SSc
within 4 years. Two of three ATA-positive miners with
diffuse interstitial pulmonary fibrosis progressed to prob-
able and definite SSc within 3 and 2 years, respectively.
This suggests that in some uranium miners diffuse lung
fibrosis may be an early manifestation of SSc or a form of
sclerosis sine scleroderma [41], as has been shown for 2
miners with other AAb specificities (fig. 4). The higher
frequency of ATA in miners with diffuse lung fibrosis
compared to miners with Raynaud’s phenomenon or
miners without SSc symptoms also supports this theory.
Considering the potentially predictive importance of
ATA, we looked further for reactivities against human
eukaryotically expressed topoisomerase I as possible early
autoimmune responses even in miners without ANA.
Only low-titer reactivities could be observed in ANA-neg-
ative miners. Neither significant associations with clinical
symptoms nor progression of the autoimmune ATA re-
sponses or development of SSc could be observed. Fur-
thermore, the HLA and TNF allele associations described
for the clear ATA responses were not found in these min-
ers. Therefore, only clearly positive ATA seem to be rele-
vant for SSc development. Interestingly, the prevalence of
lung cancer was higher in miners with ATA responses
compared to those without ATA responses (6.7 vs.
3.8%).

Antinucleolar Antibodies

AAb against the nucleolar antigens fibrillarin, RNA
polymerase I, II and III, 7-2/8-2 RNP (To/Th antigen),
NOR-90 and 20- to 110-kD proteins (PM-Scl antigens)
are more or less SSc specific or are markers for SSc-myosi-

tis overlap syndrome (anti-PM-Scl antibodies). The nu-
cleolar fluorescence pattern found with sera of uranium
miners were mainly speckled or homogeneous. The speck-
led pattern resembles the pattern observed for antifibril-
larin antibodies, whereas the homogeneous pattern re-
sembles that observed for PM-Scl antibodies [42]. We
have only tested for PM-Scl specificity by enzyme immu-
noassay with recombinant PM-Scl-100 protein and found
no reactivity in sera with antinucleolar antibodies. There-
fore, the antinucleolar specificities remain to be deter-
mined. The frequencies of antinucleolar antibodies in dif-
ferent groups of uranium miners (table 3) and the results
of the follow-up study (fig. 4) suggest that antinucleolar
antibodies may also be important for the diagnosis of ear-
ly manifestations of SSc or sclerosis sine scleroderma in
some uranium miners with diffuse lung fibrosis, as sug-
gested for ATA. The diagnostic and prognostic relevance
may become more important if the specificities of these
AAb are known. Not all of the antinucleolar AAb seem to
be relevant for SSc because various specificities against
nucleolar antigens are also detectable in patients with
tumors [43]. Indeed, the prevalence of lung cancer was
higher in antinucleolar-AAb-positive miners (11.8%)
compared to antinucleolar-AAb-negative miners (3.6%,
p = 0.0006).

Anti-snRNP Antibodies

These AAb are directed against various proteins of
small nuclear ribonucleoprotein complexes. The anti-Sm

antibodies recognize the core proteins, especially B, B) and
D proteins, of U1-, U2- and U4- to U6-RNPs. They are
highly specific for SLE (American Rheumatism Associa-
tion criterion!) and are detectable in 20–35% of the
patients with idiopathic SLE. In silica-associated definite
and probable SLE as well as in miners with possible CTD
development no anti-Sm reactivities could be found. In
miners without CTD symptoms low-titer reactivities were
measured in only 0.5% (fig. 5). Therefore, anti-Sm anti-
bodies do not appear relevant for the diagnosis of SLE or
for predicting a higher risk of SLE development in uran-
ium miners. Furthermore, this discrepancy in AAb re-
sponse between idiopathic and silica-associated SLE may
indicate different mechanisms in AAb and probably dis-
ease induction.

Anti-U1-RNP antibodies are directed against the U1-
RNP-specific proteins 70K, A and C. They are markers
for mixed CTD (MCTD or Sharp syndrome). Further-
more, they are detectable in SSc patients (often develop-
ing MCTD) and anti-Sm-positive SLE patients. In uran-
ium miners, low-titer U1-RNP antibodies could be found
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in slightly higher frequencies than anti-Sm antibodies
(fig. 5). Clearly positive results were obtained only in 6
miners, in 3 with positive results by immunodiffusion
against ‘extractable nuclear antigens’. Two patients were
diagnosed as probable SSc. Of these, one developed
MCTD within 5 years. The other developed lung fibrosis
in addition to Raynaud’s phenomenon, sclerodactyly,
proteinuria and elevated erythrocyte sedimentation rates.
Therefore, a diagnosis of MCTD is likely also in this
patient. A clearly positive U1-RNP reactivity was also
seen in one miner with possible CTD development. His
serum reacted strongly positive in EIA and showed reac-
tivities in immunoblot against 70K protein (weak), pro-
tein A (strong) and protein C. This patient had elevated
erythrocyte sedimentation rates, lymphopenia, arthralgia,
Raynaud’s phenomenon and a progressive restrictive ven-
tilation disturbance but no radiographic signs of diffuse
pulmonary fibrosis. In the three other miners with clearly
positive anti-U1-RNP results, no CTD symptoms were
seen at the time of the first serum analysis. One miner
developed Raynaud’s phenomenon within 3 years. In
conclusion, the follow-up showed that miners with clearly
positive anti-U1-RNP antibodies may have a high risk of
developing MCTD or SSc with lung fibrosis. This rela-
tionship has already been described in nonexposed pa-
tients [44]. In 1 miner, the autoimmune response was seen
after a follow-up of 9 years. In 1987, he was negative for
anti-U1-RNP; in 1994, his serum showed a low-titer
response in EIA and 2 years later, he was clearly positive,
showing a high-titer reactivity in different EIAs, positivity
in immunodiffusion and immunoblot. Therefore, miners
with low-titer reactivities should also be followed up.

In summary, anti-U1-RNP antibodies are only rarely
detectable in uranium miners. But if they are found at
higher titers, development of MCTD or SSc is possible.

Anti-dsDNA Antibodies

AAb against double-stranded DNA are marker anti-
bodies for SLE and are considered as an ACR criterion for
the diagnosis of SLE [20]. However, the diagnostic sensi-
tivity and specificity for SLE depend on the techniques
used for the determination of these antibodies. We found
these antibodies in medium to high titers in the sera of
uranium miners with definite SLE (38.9%), with probable
SLE (27.3%), with signs of a possible SLE/CTD develop-
ment (15.5%) and even in 2% of the miners without CTD
symptoms. The frequency in silica-associated SLE was
lower compared to 61.4% in the group of nonexposed SLE
patients from the same geographical region and with the
same ethnicity, but a female predominance. Since all of

the uranium miners with SLE are men with mainly a late
onset of disease, the differences may be related to age or
gender. Some authors described a lower prevalence of
anti-dsDNA as well as -U1-RNP and -Sm antibodies [45,
46] and a higher prevalence of anti-Ro and -La antibodies
[45–47], which corresponds to the serological findings in
the silica-associated SLE group. However, this was not
confirmed in other groups of later-onset SLE [48–50]
which may reflect ethnic [48, 50] or methodical [49] dif-
ferences.

Little is known about the predictive value of anti-
dsDNA AAb in risk persons for CTD/SLE development.
To look for further parameters for a risk assessment we
investigated the prevalence of the idiotype 16/6 (16/6 Id),
a major cross-reactive idiotype of anti-DNA antibodies
involved in the pathogenesis of experimental lupus, in dif-
ferent groups of uranium miners [25]. The prevalence of
16/6 Id was higher in all groups compared to those in
healthy blood donors. It was 18.5% in miners with SLE
(definite and probable) and 22.2–26.5% in miners with
clinical and/or serological signs for CTD development. All
16/6-Id-positive miners were positive for anti-dsDNA an-
tibodies and were mostly associated with the production
of other CTD-typical autoantibodies. The prevalence of
the idiotype 16/6 in anti-dsDNA-positive miners corre-
lated slightly with CTD/SLE symptoms: 55.6% in SLE
patients, 47.4% in miners with possible CTD/SLE devel-
opment and 22.2% in miners without CTD symptoms.
Furthermore, in a short-time follow-up, a progression of
the disease state was seen in two miners of the 16/6-Id-
positive group, but not in 16/6-Id-negative miners. In
conclusion, the detection of 16/6 Id in quartz dust-
exposed miners may indicate a higher risk for the devel-
opment of SLE. On the other hand, it can be suggested
that disturbances of the idiotypic/anti-idiotypic network
through chronic stimulation of the immune system by
quartz particles and/or infections (which are more often
seen in uranium miners compared to the normal popula-
tion) may play a pathogenic role in this risk group.

Anti-Ro/SS-A Antibodies

These AAb are directed against proteins of Y-snRNP
complexes (Ro52, Ro60). They are diagnostic markers of
primary and secondary Sjögrens’ syndrome and SLE sub-
types. Furthermore, anti-Ro/SS-A antibodies are rarely
found in SSc patients. In uranium miners with definite
and probable SLE they were found in similar frequencies
as anti-dsDNA antibodies (fig. 5) and were often associat-
ed with these. This suggests that some antiRo/SS-A anti-
bodies are anti-idiotypic anti-dsDNA antibodies as de-
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scribed by Zhang and Reichlin [51]. One miner with anti-
Ro/SS-A antibodies died by progressive diffuse pulmo-
nary fibrosis. The histological findings led to the diagnosis
of ‘sclerosis sine scleroderma’ (fig. 4). Anti-Ro/SS-A anti-
bodies were also detectable in miners without CTD symp-
toms. There was a negligible association of the anti-Ro/
SS-A frequency with the intensity of exposure in these
miners as well as in miners with Raynaud’s phenomenon.
All anti-Ro/SS-A-positive patients of the other groups of
uranium miners were highly exposed to silica dust. An
antigen-driven induction of anti-Ro/SS-A antibodies in
uranium miners dependent on the intensity of silica expo-
sure can be suggested by the following points: (1) Silica
can lead to an upregulation of the TNF-· expression by
influencing the TNF gene promoter [52], (2) TNF-· itself
may induce a translocation of the intracytoplasmically
localized Ro52 and La proteins to the cell surface [53].

Summary and Conclusions

The quartz dust-exposed uranium miners, especially
the highly exposed, have a higher risk of developing sys-
temic autoimmune diseases as has been shown by epide-
miological studies [8, 9]. The data on AAb presented here
show that the risk of developing CTD is even higher if the
miners have disease-specific AAb. The following ANA
specificities should be determined for a risk assessment in
uranium miners: (1) ACA, ATA and antinucleolar anti-
bodies for SSc, (2) anti-U1-RNP antibodies for MCTD/

SSc, and (3) anti-dsDNA antibodies (carrying 16/6 Id) for
SLE. From our data it can be concluded that it is not nec-
essary to determine anti-Sm and anti-Jo-1 antibodies. The
highest predictive value was seen for ACA and ATA
regarding SSc development. The risk for SLE develop-
ment in subjects positive for anti-Ro/SSA, -La/SSB and/
or -dsDNA antibodies remains to be established in larger
groups. The higher prevalence of these AAb in quartz
dust-exposed uranium miners compared to various con-
trol groups and in relation to clinical symptoms of CTD
may be a sign of a developing autoimmune disease. Alter-
natively, they may be produced as a result of the exposure
to silica not resulting in the development of CTD. This
question can be addressed through a long-term follow-up
of all uranium miners with such AAb.
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Abstract

20S proteasome represents the proteolytic core complex

for cytoplasmic protein degradation that is involved in

the activation and regulation of the immune response. In

this context, proteasome generates antigenic peptides

for the MHC class I pathway and activates NF-ÎB. In a

recent analysis, we could identify a frequent humoral

autoimmune response directed against specific protea-

somal subunits in patients with autoimmune myositis,

systemic lupus erythematosus and primary Sjögren’s

syndrome. The outer ring subunit HC9(·3) was identified

as the predominant target of the anti-proteasome re-

sponse in these entities. In addition to the reactivity

against HC9(·3), patients with primary Sjögren’s syn-

drome expressed a more polyspecific recognition pat-

tern of proteasomal subunits involving the active inner

ring proteins. In follow-up analysis, anti-proteasome an-

tibody titers revealed a correlation with disease activity

in patients with autoimmune myositis and systemic lu-

pus erythematosus. The current review summarizes re-

cent data providing evidence that the 20S proteasome

represents an important target of the humoral autoim-

mune response in systemic autoimmune diseases and

extends insight into pathogenic aspects of these dis-

eases.
Copyright © 2000 S. Karger AG, Basel

Structure and Function of the 20S Proteasome

20S proteasome is an abundant and highly conserved
protease complex with N-terminal nucleophile hydrolase
activity throughout the evolution of eukaryotics and ar-
chebacteria [1, 2]. In mammals, it represents the major
cytoplasmatic machinery for protein degradation consist-
ing of its catalytic core, the 20S proteasome, in interaction
with 19S regulator caps or the 11S proteasomal activator
(PA28) [3, 4]. The 20S proteasome itself is arranged in a
cylindrical structure of four staggered rings, each com-
posed of seven different but evolutionary related subunits
(fig. 1) [5]. The proteasomal proteins of the outer rings
belong to one protein family named ·-type, while the
inner rings, which carry the active sites, are members of
the so called ß-type family (table 1).

Former investigations revealed the fundamental role
of proteasome for cell homeostasis as a multicatalytic
cytoplasmatic protease by degradation of polyubiquitiny-
lated proteins into short peptides [6]. Moreover, it be-
came clear that the proteasome is not only a selective
machinery for the clearance of misfolded proteins: it also
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Fig. 1. Structure and function of the 20S proteasome. The house-keeping catalytic subunits MB-1, delta and Z are
replaced by the interferon-Á-inducible subunits LMP-7, LMP-2 and MECL-1 increasing the generation of antigenic
peptides.

Table 1. Subunits of the human 20S proteasome [5, 23–31, 33]. The inducible by interferon-Á-subunits are indicated
as ß1i, ß2i and ß5i. Four of the ·-subunits carry putative nuclear localization sequences (NLS). Subunits undergoing
posttranslational processing are indicated

Subunit Amino
acids

Molecular
weight

Isoelectric
point

Function and interaction

246 27.4 6.35 NLS (nuclear transport?), RNAse activity
·2-HC3 233 25.7 7.12 NLS (nuclear transport?), phosphorylated
·3-HC9 261 29.5 7.58 NLS (nuclear transport?), binds HTLV-1 TAX,

phosphorylated
·4-HC6 248 27.9 8.60 NLS (nuclear transport?), binds HBV HBx
·5-ZETA 241 26.4 4.69 RNAse activity, phosphorylated
·6-HC2 263 29.6 6.16 binding site for PA28
·7-HC8 254 28.3 5.20 phosphorylated
ß1-‰1 205 21.7 4.91 catalytic
ß1i-LMP21 199 21.3 4.80 catalytic
ß2-Z1 277 25.2 5.54 catalytic
ß2i-MECL11 234 24.6 6.07 catalytic
ß3-HC10-II 205 22.9 6.15
ß4-HC7-I 201 22.8 6.52
ß5-MB11 204 22.5 8.67 catalytic
ß5i-LMP71 204 22.6 7.59 catalytic
ß6-HC51 241 26.5 8.27 phosphorylated
ß7-HN31 219 24.3 5.47 binds HTLV-1 TAX?
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Fig. 2. Autoimmune response against
the proteasome in sera from patients
with autoimmune myositis (DM 6/10;
PM 17/29), systemic lupus erythemato-
sus (SLE 34/60), primary Sjögren’s syn-
drome (pSS 14/43), rheumatoid arthritis
(RA 1/47), tumor patients and normal
healthy controls. ELISA reactivities and
median values of patients and healthy
control sera to purified 20S proteasome
are shown. The respective cut-off value
(2,000 arbitrary units) is indicated (–––).
Statistics were performed using the non-
parametric Kruskal-Wallis test.

activates some transcriptional factors such as NFÎB and
controls cell cycle via processing of cyclin. Most interest-
ingly for immunologists, proteasome represents the main
machinery for the production of antigenic peptides with a
high affinity for the MHC-class-I binding domain [7, 8].
In this way, foreign proteins (e.g. proteins of viral origin)
are cleaved to peptides and subsequently transported via
TAP-1 and TAP-2 into the endoplasmic reticulum, where
they bind to the MHC class I molecules. Under the
influence of the inflammatory cytokine interferon-Á, the
proteolytical properties of proteasome change remarkably
[9–12]. In this context, the three subunits of the ß-type
LMP-7, LMP-2 and MECL-1 are overexpressed and inte-
grated into the proteasomal complex replacing the house
keeping catalytic subunits MB-1, delta and Z, respective-
ly. This different composition of the proteasomes leads to
effective usage of the cleavage sites and results in en-
hanced generation of some antigenic peptides with an
affinity for the MHC class-1 binding domain [13]. While
the proteolytic activity of proteasome is restricted to three
ß-sites, the ·-type subunits interact with regulatory pro-
teins, such as the 19S regulator or the PA28 activator of
the proteasome.

The subunits of the proteasome vary in their molecular
weight and isoelectric points, allowing a differentiation of
the respective protein in two-dimensional gel electropho-
resis (table 1). Furthermore, sequencing of all proteaso-

mal subunits revealed no sequence homologies to other so
far known proteins [14]. Interestingly, two of the interfer-
on-Á-inducible subunits of the proteasome, LMP-7 and
LMP-2 (low-molecular-weight proteins) are encoded on
chromosome 6 within the MHC class II locus.

The cellular localization of proteasome is not restricted
to the cytoplasm. A remarkable amount of proteasome is
detectable in the nucleus of normal cells and especially of
tumor cells. Four of the mammalian ·-type subunits of
the proteasome carry putative nuclear localization signals
(table 1). These sequences may enable the entrance of the
whole complex into the nucleus, while investigations
regarding the function and possible interactions of protea-
some with other nuclear proteins are in progress.

Detection of Antiproteasome Autoantibodies

The first description of a humoral antiproteasomal
response in patients with systemic lupus erythematosus
was performed by Arribas et al. [15] in 1991. Their analy-
sis revealed a reactivity against different proteasomal pro-
teins in 35% of patients with systemic lupus erythemato-
sus as judged by immunoblotting. The detection of anti-
proteasome antibodies of IgG type has been confirmed by
our group, revealing that this phenomenon is not unique
to systemic lupus erythematosus but can occur also in
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Fig. 3. Antiproteasome recognition pattern by sera from patients
with systemic lupus erythematosus (SLE) and polymyositis (PM)
using immunoblot analysis. Patients with multiple sclerosis (MS)
served as controls. Lane M: rabbit anti-proteasome antibody MP1
recognized proteasomal subunits of 30–20 kD. Lane 1: positive con-
trol.

patients with other systemic autoimmune diseases, such
as autoimmune myositis and primary Sjögren’s syndrome
[16, 32]. Moreover, the sensitivity and specificity of this
autoantibodies were evaluated in different rheumatic dis-
eases and controls using ELISA technigue (fig. 2).

The detection of antiproteasomal antibodies in ELISA
requires a highly purified fraction of the 20S proteasome
complex, especially cleared from a heat shock protein
with a molecular weight of about 90 kD. This protein
could be potentially copurified after ion exchange chro-
matography on DEAE-Sephacel, density gradient centri-
fugation in a 10–40% sucrose gradient for 16 h at 40,000
rpm and even after ion-exchange chromatography on
ResourceQ and MonoQ-columns (FPLC, Pharmacia). To
exclude reactivities against other proteins, a sandwich-
assay using a monoclonal antiproteasomal antibody
avoids these problems providing a sensitive and specific
detection method. The performance of this assay has been
described in detail elsewhere [16].

To characterize the targets of the antiproteasomal
response, it was necessary and of major importance to dif-
ferentiate between the recognized subunits of the com-
plex. Therefore, we investigated purified proteasome in
immunoblotting as well as in two-dimensional gel electro-
phoresis experiments. SDS-PAGE alone in its technical

variations is not sufficient to differentiate between all
subunits of the proteasome, because some subunits have
almost the same molecular weight. However, immuno-
blotting is able to detect the antibody recognition of more
than one subunit of the proteasome. Moreover, signals
against proteins with a molecular weight between 26 and
30 kD represent ·-type subunits, whereas molecular
weights in the range of 21–25 kD correspond to ß-type
subunits of the proteasome in their processed form.

Immunoblot analysis of sera from patients with sys-
temic lupus erythematosus and autoimmune myositis
revealed that proteasomal proteins with a molecular
weight of about 28 kD are autoimmune targets. Of note,
in most cases the sera recognized only one single band in
immunoblotting [16].

In order to identify the target proteins, an analysis of
proteasome has been performed in two-dimensional elec-
trophoresis and the sera were subsequently tested by
Western blotting. As a result, the ·-type subunit HC9 has
been identified as the major antigen in patients with sys-
temic lupus erythematosus and autoimmune myositis
[16] (fig. 3). Less frequent reactivities were observed
against other ·-proteasomal subunits, such as HC8 and
HC2, and ß-type subunits, such as the active subunits
MECL-1, LMP-7 and Z. Furthermore, the detection of
antiproteasomal antibodies directed against specific sub-
units is possible employing recombinant subunits of the
complex such as HC9.

Further analysis sought to evaluate the findings ob-
tained in patients with systemic lupus erythematosus and
autoimmune myositis. In these studies, patients with pri-
mary Sjögren’s syndrome, 39% of whom reacted against
proteasome, revealed a more polyspecific recognition pat-
tern of proteasomal proteins involving subunits of both
families in immunoblotting and two-dimensional gel elec-
trophoresis. Taken together, almost all patient’s sera that
were positive in ELISA showed reactivity in immunoblot-
ting.

Diagnostic Importance of Anti-Proteasome

Antibodies

Autoantibodies are a hallmark of systemic autoim-
mune diseases that provides important diagnostic and
prognostic information [17]. Antiproteasomal antibodies
were detected in different diseases of rheumatic origin
and, therefore, their diagnostic specificity is limited. De-
spite the fact that in systemic lupus erythematosus anti-
dsDNA antibodies represent the major diagnostic and
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pathogenetic autoantibody, the description of antiprotea-
somal antibodies complete our understanding of B cell
autoimmunity in this entity. On the other hand, autoim-
mune myositis can be differentiated histologically and
clinically into two entities, poly- and dermatomyositis,
while no reliable serological marker exists. Distinct au-
toantibodies occur in about 20% of these cases, character-
izing the clinical manifestations of the anti-tRNA synthe-
tase syndrome with arthritis, Raynaud’s phenomenon
and pneumonitis [18, 19]. Therefore, of antiproteasomal
antibodies, which are defected in about 60% of patients
with autoimmune myositis, are the most frequent autoan-
tibody phenomenon in this entity described so far. Fur-
thermore, our data provide evidence that the antiprotea-
somal response is related to disease activity in systemic
lupus erythematosus as well as in autoimmune myositis.
However, comparison of the clinical data obtained from
the antibody-positive patients with those of the antibody-
negative patients showed no direct correlation to clinical
manifestations in systemic lupus erythematosus and au-
toimmune myositis.

Pathogenetic Mechanisms in Systemic

Autoimmune Diseases Targeting Proteasomes

The mechanisms initiating autoimmune processes and
breaking tolerance are of special interest in immunology
as well as rheumatology. Here, the proteasome stands at a
cross-point of two pathways. Naturally, it represents a
machinery for the production of antigens of foreign or self
origin, which are able to prime the cytotoxic T cell
immune response. On the other hand, subunits of the 20S
proteasome itself are targets of systemic B cell autoimmu-
nity.

In eukaryotes, determination of self or nonself is pro-
vided by the presentation of processed protein fragments
via MHC class I or II molecules. Antigenic peptides are
either produced by proteasome for the MHC class I path-
way or are degraded within the lysosomal compartment
for uploading of MHC class II molecules. Subsequently,
effector cells, such as cytotoxic CD8+ T cells for the MHC
class I and CD4+ T-helper cells for MHC class-II re-
sponse, initiate the amplification of the autoimmune
response.

Current investigations provide data of a low linkage
rate for antigens between both presentation pathways
[20–22]. Furthermore, overexpression of both MHC class
molecules occurs under the influence of the inflammatory
cytokine interferon-Á, which is secreted by CD4+ T cells

and simultaneously activates CD8+ T cells. However, the
proteasome is preferentially involved in the initiation and
perpetuation of autoimmune cytotoxic T cell response.

Further studies are needed to establish how the B cell
autoimmune response initiates autoimmunity against
such antigens as proteasome. One possible mechanism is
a cross-reactivity of a primary response against exogenous
proteins. This pathway would require sequence and/or
epitope homologies between the targets and, therefore,
seems to be unlikely for the unique sequences of proteaso-
mal proteins. Probably, the proteasome itself drives its
own autoimmune response as suggested for other known
autoantigens. A break of tolerance is possible after immu-
nization with a large amount of autoantigen in vivo, as
demonstrated by a variety of studies. In the case of protea-
some, our group was able to measure elevated levels of the
antigen (25–560 ng/ml) in the circulation of patients with
autoimmune myositis, primary Sjögren’s syndrome and
systemic lupus erythematosus compared to healthy con-
trols, patients with rheumatoid arthritis and solid tumors.
Moreover, follow-up analysis of 2 patients has docu-
mented that the free circulating proteasome is enhanced
prior to elevated antiproteasome antibody reactivities.
Recognition of different proteasomal subunits in immu-
noblotting and two-dimensional gel electrophoresis raised
the question whether this phenomenon is due to sequence
homologies between the respective subunits or mecha-
nisms of intermolecular spreading of the autoimmune
response against proteasome. Most recently, we obtained
data from a follow-up analysis of a patient with polymyo-
sitis revealing that intramolecular spreading mechanism
occur. In detail, after initial reactivity against 20S protea-
some by ELISA a signal was observed against a ß-type
subunit with a molecular weight of about 22 kD by immu-
noblotting. After a period of 3 months, the immune
response switches against a proteasomal ·-type subunit
with a molecular weight of about 28 kD.

Together with the data on correlating disease activity
and anti-proteasome reactivity, these data suggested that
the proteasome apparently drives its own autoimmune
response with enhanced autoantibody titers during im-
munologically active disease stages.

The current data on an autoimmune response to the
proteasome complex are most consistent with the conclu-
sion that autoantigens are substantially involved in the
induction and maintenance of their autoimmune func-
tion. However, the initial mechanisms of breaking toler-
ance as well as the pathogenic importance of antiproteaso-
mal autoantibodies need to be addressed in further stud-
ies.
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